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Abstract: This paper theoretically treats, using a complex mathematical model, the elastic contact 
between bodies, taking into consideration a rigid body named projectile and an elastic one with a plane 
surface contact (target surface). After the contact has been produced and the projectile deforms the 
elastic surface in a certain unknown depth, the initial considered contact point will be transformed in a 
contact domain, and the stresses appeared on this contact domain will equilibrate the system forces 
which acts over the projectile. From this point of view, the paper offers solutions both for the contact 
domain form and integral equation for elastic contact. 
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1. INTRODUCTION 
 

Is assumed, in all that follows, that one of 
the bodies in contact is an elastic semispace, 
and the other one is a hard body called 
projectile. 

It is considered semispace , subjected 
to a normal charge 

0≥z
( )ηξ ,p  distributed over a 

finite domain D situated at its boundary . 
Current point coordinates in D are 

0=z
ξ  and η  

(fig. no 1). Newmann’s problem for elastic 
semispace consists in finding a solution which 
describes the displacement field inside the 
semispace in the following limit conditions: 
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Fig. no 1 
 
The solution for this problem can be 

obtained either from the classic Boussinesq’s 
problem, or Neuberg-Papkovici representation. 

 
 
 
 
 
 
 



2. THE TEXT OF THE PAPER 
 

2.1 Boussinesq’s problem for elastic 
semispace. Boussinesq’s problem for elastic 
semispace consists in describing the action of 
a force concentrated in a point on the boundary 
of an elastic semispace, normal to this 
boundary. Usually, this point is chosen as 
being the origin of an orthogonal reference 
system with axes Ox and Oy in the semispace 
boundary plan. M(x,y,z) point displacements 
inside the semispace under the P force action 

are: 
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with 222' zyxR ++=  (3) 
Replacing in this formula the concentrated 

charge P with ( ) ηξηξ ddp , , x with x−ξ and y 

with y−η , respectively distance  with:  'R

( ) ( ) 222 zyxR +−+−= ηξ  (4) 
with integration on D will lead to M(x,y,z) 

point displacement as in fig. no 1 
Neuberg-Papkovici representation assumes 

seeking displacement vector as: 

( ) ( 014
1 BBrgradBU +⋅
−

−=
ν

) (5) 

where B is a harmonic vector function 
( )0=ΔB , BB

0
0 is a scalar vector function 

( ), and 0 =ΔB r  is the position vector. 
In both situations the solution is written 

using potential simple layer functions 
(harmonic functions in D), 
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which allows the characteristic 

( ) ( )zyx
z

zyx ,,,,
∂
∂=Ω ω  (7) 

This solution is: 
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A more compact representation of those 
equations can be made by introducing complex 
displacement: 

n
y

n
x

n
c iuuu +=  (9) 

and differential operator 
y

i
x ∂

∂+
∂
∂=Λ  (10) 

This operator satisfies the relation: 

2
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yx ∂
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being its complex adjoint. With those 
notations equations (8) become: 
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where 
( ) ( ) ( )∫∫ +=

D
n ddzRpzyxI ηξηξ ln,,,  (13) 

2.2 Paraboloidal projectile case with 
central action.  

The classic theory of elastic contact admits 
that the surface projectile body is curved, the 
contact with semispace is produced in an 
initial considered point O (fig. no 2) in which 
two cartesian reference systems are built: Oxyz 
attached to the elastic semispace and OXYZ 
attached to the projectile. If ( YXZ , )ϕ=  is the 
boundary projectile equation, with ϕ  a C2 
class function on parts, where point O is 
considered to be an elliptic one of this surface. 
Also, the plan  is a tangent plan in 
point O at the projectile boundary: 

OxyOXY ≡

( ) ( ) ( ) 00,00,00,0 =
∂
∂=

∂
∂=

YX
ϕϕϕ  (14) 

Is assumed that the projectile is subjected 
to the action of a forces system, reducible to a 
force and a couple (because the projectile is a 
rigid, hard body), which allow it penetrate in 
the elastic semispace. Projectile – semi space 
system equilibrium is established when the 
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projectile will be penetrated to a certain depth 
(unknown) in semispace, when the initial 
considered contact point will be transformed in 
a contact domain (unknown) on which the 
projectile comes in touch with the deformed 
boundary of the semispace and when the 
stresses (also unknown) on this domain will 
reach the equilibrium of the forces applied to 
the projectile. In the absence of friction it can 
be assumed that the projectile is subjected to a 
vertical force P, which support go through the 
point ( 00 , )ηξ  from the plan . The 
displacements and deformations that occur are 
assumed to be small enough to allow using the 
linear theory. In this way the limit conditions 
can be expressed on the nondeformed 
boundary of the semispace [2]. 

0=z

Thus, although the real contact domain has 
the projectile’s shape, contact domain is 
referred as being the D domain of plan  
which after deformations gets in contact, point 
by point, with boundary projectile. So the 
equilibrium conditions for projectile are: 

0=z

( )∫∫ =
D

Pddp ηξηξ , , ,  (15) 

( )∫∫ =
D

Pddp 0, ξηξηξξ

( )∫∫ =
D

Pddp 0, ηηξηξη

 
 
 
 
 
 
 
 
 
 
 
 

Fig. no 2 
 

The limit conditions on the semispace 
boundary are given by (1), being specific to a 
contact surface without friction. Not 
considering the tangential displacement  

and  in relation to w displacement on the 
contact domain from fig. no 3 [2], the 
following equation is obtained: 

n
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n
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( )yxw ,ϕδ −= ,  (16) ( ) Dyx ∈,
which combined with equation (12)2 for  
leads to: 
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called integral equation for elastic contact. 
Distance δ  is the maxim depth where the 
projectile penetrates semispace and is called 
interpenetration. Equation (17) has an extreme 
complexity having ( ) δηξ ,,, Dp  unknown. 

In paraboloidal projectile case with central 
action, characterized by: 
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equation (17) is written 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. no 3 
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at which is added the equilibrium condition 
(15)1. In equations (18) and (19)  and  
are the main radius curves of projectile in O, 
system axes Oxyz being oriented so that 

. 

'ρ ''ρ
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3. CONCLUSIONS & 
ACKNOWLEDGMENT 

 
The contact problem between a rigid 

paraboloidal body and an elastic semispace is 
of the most importance, because the 
paraboloidal projectile equation is valid at first 
approximation for projectile of any 
configuration in the near by of any elliptic 

point of its boundary. So the contact domain is 
of elliptic shape 
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with a and b unknown semiaxes. The integral 
equation for elastic contact (19) is verified by 
pressure function 
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and the interpenetration projectile in 
semispace is: 
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K(k) is elliptical second kind integral of 

Legendre [1] with 2

2
1

a
bk −=  ellipse 

eccentricity. 
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