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Abstract: Within this paper, there is established the system of ordinary equations of the trajectory of a
rocket with respect to the Earth, while taking into account, the aerodynamic drag, the weight, and the
Earth's rotation and curvature. The local latitude and the longitude during the, flight, which implicitly
appear in the expressions of the forces acting upon the rocket, are also calculated. The mathematical
model thus obtained is rendered in forms utilized in ballistics. This system of equations can also he used
for the calculation of the trajectory of an active-reactive projectile, and also, with some adjustments, for
the calculation of the orbit of an aerospace vehicle.
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1.1.1THE THRUST
1. THE EXPRESSIONSOF THE

FORCESACTING ON THE ROCKET

WITHINTHEHYPOTHESISOF THE

FUNDAMENTAL PROBLEM OF THE
EXTERNAL BALLISTICS

The vector equation of the rocket’s,

It is assumed that the thrust, J , is oriented
along the axis of the rocket, which in turn
(whithin the main hypothesis of the

fundamental problem of the external ballistics)
is tangent to the trajectory (Figure 1).

N

axa polilor

equation m-(il—\::§+ﬁ+(§+lfc of [9],

contains the forces which effectively act on the
rocket:

- engine’s thrust, g ;
- the aerodynamic resultant force, &,

which, within the main hypothesis of
the fundamental problem of ballistics,

reduces to the aerodynamic drag, R ;

- the weight, G ;
- the Coriolis force, F..

C

Figure 1. Forces effectively applied

1.1 FORCESEFFECTIVELY APPLIED Within the Earth-linked frame O,xyz (the



trajectory is expressed with respect to Figure
1), the velocity vector V can be written as
V =V, +V,j+Vk (1)

So the thrust vectoris § = J % (2

In general, the absolute value of the thrust
is function of the flight’s altitude, &, and time
[6, 11].

The absolute value of the thrust created by
the rocket engine can be expressed as [5, 6]
5 =G,(t)+S,p, [l - B(&)], (3) where g, (t) is
the ground-level thrust (which depends upon
the time t), S, - the area of the nozzle’s exit

section, P, - the ground-level air pressure, and

B(R) - the function which indicates the
relative variation of the air pressure with

respect to the altitude, #, ﬂ(ﬁ)zﬁ (4)

0
where p is pressure at the flying altitude, £ .
For the constant thrust motor (which is
often encountered) the value of g, is given by

(61 5, = Q. =%vef =% (5) where Q,
T

2
and G, are the mass flow rate and the weight
flow rate of the exhaust gasses in the exit of
the engine’s nozzle, respectively, V, 1is the

“effective” speed of the gasses in the nozzle’s
exit, | - the specific impulse of the engine,

- the

“ballistic” duration of the “active period” (of

G w
0
—= G, =,

(§)

p
w, - the total amount of fuel, 7,

engine running), while Q, =

Iy =

Ve
— (6)
g9

1.1.2THE AERODYNAMIC DRAG

Within the hypotheses mentioned above,
the aerodynamic drag, R, is oriented along the
velocity vector V , but it acts in opposite

vV Vi +V,j+V,k
RV R VAV AV
Vv \%

direction, R

and the absolute value is

(7),
R:%-p-VZ-S-CX ()

The density, p, and the specific weight,
y, at the altitude of the flight, #,

p=p, - H®R), y=9-p, (9) where p, is the
density of the air at the ground-level, while
() is the function which indicates the
relative variation of air’s density (or specific
weight) with respect to the altitude, £ [7, 6].
The symbol S of formula (8) is the
reference aria, usually the aria of the

. -d?
transverse section of the body, S= R

(10) where d is the maximum diameter of the
transverse section of the body (fuselage), and

C, - the dimension-less aerodynamic drag

coefficient.
Within the adopted hypotheses, at a given
altitude, A, the C, coefficient is function of

the Mach number during the flight, M =!,
a

(11) where the speed of sound, a, at the flight
altitude, £, is given by a=+TRHK , (12) in
which &K is the ratio of the specific air’s heats,
C, J
H=—=1405, R=287.1-——
C, kg- K
air’s constant, and T=T(&) is the air

1s the

temperature at the flying altitude, & [7].
Substituting the numerical values, formula

(12) becomes a =20.08- \/m 12).

Within the same hypothesis, the value of
C, is expressed as a function C_ =C (M ,#)
(13).

It should be noticed that C

C, function which correspond to the active
phase of the flight, is different than C

which is the corresponding function during the
passive phase. This is due to the fact that,
during the active phase, the part of the drag
produced by the vortices which appear at the
posterior part of the rocket (at the bottom)
while flying with engine off disappears due to

which is the

xact 2

Xpas *
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jet of gasses exiting the engine.
Consequently, the drag coefficient of the

rocket can be expressed as
Cox (ML A), <t<t,
CX(M,ﬁ)—{ C.n (MRS, (14) where

t, and t, are the value of the time at the
beginning and the end of the active phase,
respectively, while C,,, =C, . —C (15)

in which C (also noted C,,) is the

posterior drag coefficient (bottom drag) which
disappears during the active phase, when the
engine is running.

The function C,=C (M,&), which is

usually given numerically, is established using
experimental data and/or calculations.
Calculation in the ballistic practice often

xact Xpost ?

xpost

employ “drag functions” like
T y el V
FV,a)=—— %,V -C/| — 16) or
V)= 7V oCE ] a9
V4 Vv
G\V,a)=——-%,,-V-C3 —|,
( ) 8000 7/0n X (aj

Vv V4 \ :
K(gj:m.%n.ci{gj (17), where y,, is

the specific weight of the air at ground level in

“normal conditions” (for the ballistic standard

atmosphere, according to [6],

, and Cf(xj =C%(M) is
a

X

kgf
m
the “standard drag coefficient” or the “drag
law” which corresponds to certain class of
aerodynamic shapes [5, 6, 8, 11, 13, 15].

In the case, the C, coefficient is expressed
as C,(M)=i-C*(M), (18) where i is the
shape index (or coefficient) of the rocket and it
corresponds to the drag law which was chosen

(usually using experimental data).
From formulae (16) and (17), we can

You =1.206

obtain F(V,a)=V-G(V,a)=V?*. K(—j (19)

8000
7T ¥Yon V2

G(V.a)= 8000 K(!j
T Yon a

where  function K(sz KM) is a
a

dimensional drag coefficient.
Consequently, the drag, defined by formula
(18), can be expressed as

C3(M)= F\V,a)=

8000
7T ¥Yon -V

R:l.p.v2 .S.j -&()ZF(V,GI):
2 T Yon V
s (21)
=12 7 4000F(V,a)
-9 Yon

where ¥ = p-g is the specific weight of the
air at flight altitude.

If H(B)=-2 =" (22) is the function
on on
that indicates the wvariation of the relative
specific weight of the air with respect to the
height, then the expression of R, expression
(21), becomes
R 4-i-S

-9

S 00 HR)V - GWV.a) = (23)
_ 4 '5.103 ‘H(R)-V?*. K(Xj

-9 a
Taking as reference surface the area of the
maximum cross-section of rocket’s body,
formula (10), the expression of the drag,
formula (23), becomes

10’ -H(&)-F(vV,a)=




i-d?
g

R= 10° - H(#)-F(V,a)=

7[.
Ci-d?
-9

fog2
_! d 10°-H(R)-V?- K(Xj
g a

10° -H(#)-V-G(V,a)= (24)

The function F(V,a), G(V,a) and K(Xj
a

are given numerically or in closed form (for
various laws) [5,6,8,10,4,1], while the shape
index, i, must correspond to the drag law
which was adopted.

If the function of rocket’s drag coefficient
is available, then, in equation (23) and (24),
the shape index must be chosen i =1, while

K(Xj is
a
\% V1
KI—h|=——7, -C (M,h) (25
L) M) 29

1.1.3THE WEIGHT

replaced by

As presented in [9], it is considered that the
weight, G, is oriented toward the center of the
Earth  (point P, figure 1), SO
§:m-§:m-(gx-i_+gy- j+0, -E), (26)
where m is the mass of the rocket; the
weight’s acceleration vector, g, at the current

location O of the rocket in flight [9], is
E:_g. X7 +(y+ Rp)~ j+z-k @
|Pq \/x2+(y+Rp)2+zz
If the distance ‘ﬁ)‘ between the rocket and
the  Earth’s
‘@EEDPO =D, =1, :\/x2 +(R +y) +2,

(28) then the weight’s acceleration vector
becomes

_ - R+ _ _
g=—g-( X jeet¥ 5, 2 -kJ.(ZQ)
Dy Der Dep

In point O, located at the distance r, and

at the latitude A from the center of the Earth,
the value of g can be obtained from

g=-g-

center 1S written as

Expression (14) [9] (taking into account
Equation (7) as well).

Neglecting the small terms and combining
Equations (14) and (7), we have

gEap_Qiffp-co§ﬂ=a\3-{l—%-co§l]:
:f'M{l_%.coglJ

r f-M
Now, r,=R,+h,
R, =R, (A,u) is the distance between the

center of the Earth and the surface of the
Earth, along the geocentric vertical which
passes through O , while h is the altitude of
point O, so Formula (30) becomes

f.M Qf)-(Rerh)3
R, +h) f-M
For altitudes h between zero and up to the

order of magnitude of tenths of kilometers, and
even higher, Equation (31) becomes [6]

f-M

N |y _[cosA ’
g:(Rp+h)2 {l ( 17 ”(32)

At the ground level, where h=0, from
Equation (31) we have

(30)

where,  usually,

g= ( -cos’ /1} (31)

M [ QR
gp = R -_1— fp. MP -cos’ /1} (33)
)
N 2 3
ggz(mh] %R &9
P l—fpi-cos3/1

The fraction which appears in the brackets

in the above equation is practically equal to 1

for flying altitudes h of up to several hundred
kilometers, so in such cases Formula (34) is

2

)
Rs h
= —_— = 1+—1| ,(35
g gP (Rp+h)2 gP( Rpj ( )
which allows for the -calculation of the

variation of g with respect to the height.

In such situations, the series expansion of
the brackets in Equation (35) (using the
binomial formula) is
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h h’ h’
=0.-|1-2-—+3-——4-—+... |(36
9 gp( R TR ]( )

For heights of the order of magnitude of
tenths of kilometers (up to 100 km) it can be
admitted that

—g.[122. 1
g9=0, (1 2 R].(37)

P

For points located on the Earth surface or
close to it (at altitudes of the orders of tenths
of kilometers, up to approximately 100 km)
calculations can also employ the formula used
in geodesics [14]

g =9.806059 —0.025028 - cos 24 — (39)

—0,00000307h
which, for the latitude A=45° and h=0,
provides g, =9.806059-m-s™. The standard
g, =9.80665-m-s” may be used
instead, as well.

Correspondingly, g,
estimated using [3]

g, =9.780573 - (1+0.0052837 -sin® A —
—0.0000059 -sin” 21)

which, for

9y =9.806354-m-s.

value

may also be

(39)

A =45°, yields

1.2THE INERTIAL CORIOLISFORCE

The Coriolis force acting upon the rocket

which has the velocity V' with respect to the
Earth, which, in turn, rotates with the angular

transport velocity €, about the P-X; [9] has
the expression F. =-m-a., (40) where m is
the mass of the rocket and a. is the Coriolis
acceleration, a. =2-Q, xV , (41)

SO

Fo=-m-2-Q,xV =2-mVxQ,. (42

The velocity V is expressed using the
components in the Earth-linked frame O,xyz,

with respect to which the orbit is expressed as
well.

Let [ﬁp ]G be the column matrix containing
the components of the Q, vector on the axes
of the geocentric Earth linked PX;Yy;z; frame
(Figure 1),

B Q. | [Qp
(2. = |0, |=] 0 | @3
Q. | |0

Since the axes of frame O Xy, Vs Zg,
parallel to the axes of the frame PX;Yy;Zz;
(figure 1), the [ﬁp]el column matrix of the
components of the vector Q, with respect to
the former frame is identical to [ﬁp ]G .
If [ﬁp] is the column matrix containing the
components of the vector Q, with respect to
the frame O,xyz (figure 1), then
Qp,

[ﬁp]: Qp |=1,-17 '[ﬁp]el =
QPZ

=TT '[ﬁp ]e =L '[ﬁp]e

Taking into account Equation (22) [9],
Expression (44) becomes

(44)

Q. | | cosBcost, —cosfcosd, sinf
Q, |=| sind, cosd, 0 |(45)
Q., | |-sinfsind, sinfsind, cosf

which gives the components:
Qp, =Q,-cosfB-cos 4,

Qp, =Qp -sin 4,
Q,, =—Q, -sin B-cos 4,

The expression of the Corollas force, (42),
can be further expended as

(46)



i j k
IEC: v,V \/z zzn[M'g?Pz_

x Yy
Q, Oy O
N Q) THY o) 404Gy - Qo)
Next, taking into account (46), the Coriolis
force can be expressed as

F. =2nQp‘(—Vy‘Sin,B-cos21 -V, -sind))-i +
+2m, - (V, - cosB-cost +V, -sinf3-cosl)- | + (48)
+2m0, - (V, -sind, -V, -cogB-cosh) -k

which, defining the symbol a., =—-a. can be

(47)

further written as

FC :m.aFc :m'(a‘ch'i +a‘Fcy' J +a'Fcz'k)’ (49)
where

A = 2(Vy 'QPZ _Vz 'QPy):
=2-Qp - (=V,sin fcos 4, =V, sin 4,)
aFcyzz'(Vz'QPx _VX.QPZ):

=2-Q, - (V, cosfcosA +V, sin BcosA,)
Ar, = 2(Vx 'QPy _Vy 'QPX):

=2-Qp - (V,sin 4, =V, cos Bcos 4,)

(50)

2. THE SYSTEM OF DIFFERENTIAL
EQUATIONS OF THE ROCKET’S
TRAJECTORY

The differential equations system of
rocket's trajectory flying within a resistant
medium and taking into account Earth's
rotation and curvature is obtained from vector
Equation (19) [9] and using Formulae (1), (2),
(7), (26) and (49). Collecting the results, the
trajectory with respect to the Earth-linked
O, xyz frame is described by:

dVX 5 VX R X
=, T _+gx+ach

dt m V
dVy_g' Vv, RVy+ i a
d¢ mV m 9y * 8ry
dVZ Z.V_Z_B._Z+ +a
d mV m 9: %% (51)

dx _

dt X

dy _

dt Y

dz _

dt ‘

where

V=V +V] +V;] . (52)

Substituting the drag R with the general
expression, Equation (8), and taking into
account Equations (27) and (50), the system of
differential equations of the rocket's trajectory
becomes:

W_IN_ AR\ g X R
st my am 9 qp+mz R

V_IY AC\n—g B iavn, -
g mv a9 L AR

d_IN By gl R
dt mv 2mV\4 gqpﬂ\@’y e
dx
o
dy
dt

dz
o

where the traction, J, is determined as shown
in 1.1, the acceleration of the weight, g, can
be obtained using Equation (14) [9] or (30),
(31) or (36), the distance to the center of the
Earth, 9., is given by Equation (28), while
Q.,, Qp,
Equation (46).

Expressing the drag from one of Equations
(24), which are usually utilized in ballistics,
and taking into account Equation (46),
trajectory's differential equations system
becomes

(53)

and Q,, are calculated using

a H 2
VN, _IT NV, _dD -103H(h)K(V—)-V-VX—
dt m V mg a
—g~5X -2Q,(V,sin fcos A, +V,sin 4,)

cP
dv 5 V id 2

y=i'—y—&~103H(h)K[\Lj-V WV, -

dt m V mg a
—g‘yﬂuzgp(vxsin A, +V, sin B cos A,)

cP

I i 2
dVZ:i-V—Z—ﬂ»lo»“H(h)K[\L]-V v, -
dt m V mg a
_gigzp +2Q,(V,sin 4, =V cos fcos 4,)
& _
dt X
@, (54)
dt
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The latitude A and the longitude u of the

rocket at a certain instant during the flight are
obtained using Formulae (36) or (37) and (41)
[9], while taking into account Expressions
(34), (39) and (40) [9].
The altitude h, of the rocket during the
flight is
h=3, -R, (55

where J, is the distance between the rocket

and the center of the Earth [9], while R,
which is generally a function R,(A4,u), is the
distance from the center of the Earth, P, up to
a point P, located on the surface of the Earth,
at the same latitude A4 and longitude x as the

rocket.
Air pressure, P, and air density, p (or the

specific weight, ), at the altitude h (which
occur in form (53) of the equations system) are
obtained from Equations (4) and (9). The
functions $B(h) and F(h), which represent the
relative variation with altitude of the pressure
and density, respectively, can be expressed as

fB(h):i: pOn . p — pon B(h)
PBo Po Pon By

%(h):ﬁz pon . p — pOn . H(h) (56)
Po  Po Pon Po

where p, and p, are the ground-level air

pressure and density p,,, and p,,, are the
ground-level air pressure and density in

normal conditions, while the functions
B(h)= P and H (h)= P oV are the
on pOn yOn

functions that describe the relative variations
of the air pressure and density (or specific
weight), with respect to the altitude within the
standard atmosphere model which was
adopted [7, 12, 21].

For flight distances (ranges) of 40-50 km
or even larger it can be admitted that R, is a

constant equal to the spherical homogeneous
Earth (R, =6371110-m), without affecting

meaningfully the accuracy of the results. In
such a case the variation of g with respect to

the latitude 4 can also be neglected, however,
its variation with respect to the altitude h must
be taken into account.

The system of differential equations that
was obtained represents the mathematical
model of rocket's trajectory (in a resistant
medium), which takes into account the daily
Earth's rotation and Earth's curvature. The
calculations are further performed via the
numerical integration of this system.

The numerical integration of the
differential equations system begins at the
moment t =t,, when the rocket looses contact

with the launching device (e.g., the ramp), and
the elements of the motions at the end of the
motion of the launching device are used as the
initial conditions, i.€.,

t=t,V,=(V,), =V, cosb,

Vv, =(V,) =V cosg, V,=0, x=0, y=0,

y

x=0 (57)

where V, and 6, are the speed while leaving
the launcher and the launching angle,
respectively.

During the passive phase of the flight, in
other words after the end running time of the
rocket engine, for t>t, (where t, is the
extent of the active phase), the traction term in
the equations of motion have to be voided
(3 =0). The elements of the motion (state
variables as well as other parameters) at the
moment t=t, have to be recorded and the
integration further proceeds
(t =t,) data as initial conditions.

The slope @ of the tangent to the trajectory
with respect to the horizontal plane at the
launching position, XO,z is given by the
expression

using these



Vy
gl = ———
YV, 4V,
The equations of motion are usually
integrated until a predetermined altitude, h, is

(58)

reached on the descending side of the
trajectory (when 8 <0).
Calculation of the range requires

integrating until h=0 on the descending part
of the trajectory.

Adequate choice of the initial conditions
and of the end conditions allows the ordinary
differential equations system obtained herein
to be used for calculation of the active-reactive
projectile's trajectory as well. So, if t, is the
moment when the projectile exits the barrel, t,
- the start of the rocket engine and t,
corresponds to the end of the engine run, the
ordinary differential equations system (with
the appropriately selected  boundary
conditions) can be integrated choosing J =0
for the time-frame [to,tl], next setting, J #0,
for the time-frame [tl,tz] and, finally 9 =0,
again for t >t,, when the engine is no longer
running.

The mathematical model presented in this
paper can also be used (with the adequate
adjustments) for calculating the trajectory of
an aerospace vehicle within the dense
atmosphere.

1. CONCLUSION

The mathematical model obtained is
rendered in forms utilized in ballistics. This
system of equations can also be used for the
calculation of the trajectory of different
rockets, active-reactive projectile, and also,
with some adjustments, for the calculation of
the trajectories of an aerospace vehicle.

For distances of 20-25 km, the inertial
Coriolis force introduced by the Earth's
rotation can be neglected. For bigger distances,
the Coriolis force must be also considered. The
variation of g with respect to the altitude h

must be taken into account.
For flight distances (ranges) of 40-50 km
or even larger, it can be admitted that R, is a

constant equal to the spherical homogeneous

Earth (R, =6371110-m), without affecting,

meaningfully, the accuracy of the results.
For distances over 50-60 km, the variation
of g with respect to the latitude A and

altitude h must be taken into account.
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