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1. INTRODUCTION 
 

Let it be the following arrays sorted in 

ascending order V v  and  1 2, , , pv v 

 , , ,W w w w 1 2 q . The result of the merging 

operation of two arrays sorted in ascending or 
descending order, V and W,  is a new array, X, 
that contains all the elements from V and W 
sorted in  ascending or descending order.  The 
algorithm of merging two arrays is well known. 
The algorithm consists of iterating through the V 
and W arrays and comparing each current 
element  from V  with the current element  

Let it be the following merging function 
written in C++:  
void merge(int *v,int *w,int *x,int p,int q) 
{ 
int i,j,k; 
i=j=k=0; 
while(i<p && j<q){ 
     if (v[i]<w[j]){ 
           x[k++]=v[i++]; 
           } 
     else 
           x[k++]=w[j++]; 
} 
 while (i<p) 

iv jw

from W. The minimum value between  and 
        x[k++]=v[i++]; 

iv

j

 while (j<q) 
        x[k++]=w[j++]; w  is written to the resulting array, X. In the 

merging algorithm, one of the V or W arrays is 
iterated first and the elements of the other one 
are written to the X array.  

}  
Let it be the sorted array in an ascending 

order  1 2, , , nX x x x  n p q with   



elements, obtained by merging the V and W 
arrays. Let it be C , the medium number of 
comparisons, defined by the total number of 
comparison divided by the number of possible 
arrays V and W. The [1] and [2] papers present 
the limits of the medium required number of 
comparisons, , depending on the lengths, p C
and q of the V and W arrays. In this paper we 
will prove that the medium number of 
comparison required for obtaining the X  array 
sorted in ascending order can be approximated 
with . It must be mentioned that this 2n 
number does not depend on the lengths of V  or 
W  arrays.  

The obtained result is validated with a 
program written in C++ language.  
 

2.  FINDING THE  NUMBER C
 

The operation of merging the V  and  W
arrays involves comparing the elements of these 
arrays and updating the X  array. Also, for 
merging, one array will be iterated first. 
Obviously, the total number of 
 comparisons required for building the X  array 
is equal to , where  is the number of n m m
remained elements from the array that was not 
iterated. The minimum number of comparisons 
equals to the minimum value between p  and  q
in the following case: if all the elements of the 
array with the smallest number of elements, are 
smaller than all the elements from the array with 
more elements that the first one.  If the elements 
with the greatest values from V  and  will be W
the greatest elements from X  array, then the 
number of comparisons is equal to 1p q  .  

Without reducing the generality we will 
suppose that the V  array will be iterated first. In 
the end, we will double the value of the number 
of comparisons by including the case when  W
will be iterated first.  

It is clear that the greatest element from 
V Cwill influence the value of . Let it be the 
final array sorted in ascending order, with  n
elements  1 2, , , nX x x x  , with 

1 2 nx x x    . In order to compute C , we 

have to follow the next steps: 
1. It is assumed that ix  is the greatest 

element from V  and then there are i  
comparisons required;  

2. Compute the number of possible arrays  
 for which V ix  is the greatest element from V ; 

3. Repeat steps 1 and 2 for all the possible 
choices of ix ;  

4. Compute the value of .  C
If 1x  is the greatest element from V , than 

there is an array  1V x , with no element 

that precede 1x , which means that only one 

comparison is needed, ( 11 2 1 ).  
If 2x  is the greatest element from V , than 

there are two possible array that contain this 
element:  2xV   and , where  1 2,V x x  1x  

might be an element from V . For both these 
possible arrays, 2 comparisons are needed for 
each array, ( 2x  with 1x  and 2x  with 2x  or 

with 3x ),  in total 4 comparisons, ( 2 2 ).  2 1
If 3x  is the greatest element from V , then 

there are 2 possible values that can exists in V :  

1x  and/or 2x . In this case there are 4 possible 

arrays with V 3x , being the greatest element,  

 3xV  ,  1 3, xV x  with 1 3x x , 

 3x2,V x  with 2 3x x ,  with  3x1 2, ,V x x

1 2 3x x x   or 2 1 3x x x  . For each of the 

four arrays, 3 comparisons are needed, ( 3x  wit 

1x , 3x  with 2x  and 3x  with 3x  or with 4x ), 

which makes a total of 12 comparisons, 

( 3 13 2  ).  
In general, if ix  is the greatest element from 

, there are iV 1  possible elements that can 
precede it and that can be elements of V . The 
number of subsets with 1 elements is equal 

1i

 i 
to 2  , so there 12are i  V  arrays with ix  

being the greatest element. The total number of 

comparisons equals to i 12i . 
Because we supposed that the V  array will 

be first iterated, this implies that . 
Suppose by contradiction that ,  could 
be iterated first because the greatest element 
from 

1i n 
Wi n

X  is now in V .  
From the above considerations it follows that 



 

 

            “HENRI COANDA”                                                                                                                                                                                                    “GENERAL M.R. STEFANIK” 
          AIR FORCE ACADEMY                                                                                                                                                                                               ARMED FORCES ACADEMY                 
        ROMANIA                                                                                                                                                                                                                        SLOVAK REPUBLIC 
 

 

INTERNATIONAL CONFERENCE  of  SCIENTIFIC PAPER 
AFASES 2014 

Brasov, 22-24 May 2014 
 

 
the total number of comparisons required for 
iterating  first the V  array, and then W  is equal 
to: 

                                                    (1)  
1

1

1

2
n

i

i

i







The total number of possible V  arrays is equal 
to: 
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By symmetry, supposing that W  is iterated first, 
and after that V , it follows that the number of 
comparisons equals: 

1
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and the number of possible arrays W  equals  to:  
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This leads to a total number of comparisons 
equal to: 

                                (5)  
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and the total number of possible arrays V  and 
 is equal to: W

 12 2 1 2 2n n                (6) 

From the equality: 

 
1

2 1
1
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n
n x

x x x
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 
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
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which occurs for , through derivation, and 
then multiplication with 

1x 
x  and substitution of x  

with 2 we have the following equality: 

 
1

1

2 2 2
n

i

i

i n



     2n                           (8) 

The medium number of comparisons becomes:  

 
 2 2 2

2 2

n

n

n
C

  
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
            (9) 

By processing (9), we obtain:  

2
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2 2n
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C n
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
                                (10)  

From the equality: 
2 2

lim 0
2 2nn

n


 



                                     (11) 

results that for values of  big enough, C  can 
be approximate with 

n
2n  .  

The above chart of the function 
2 2

( )
2 2x

x
y x

 



, , 0x  1x   and 

1
(1)

ln 2
y   proves that the approximation is 

very good for values of . 10n 
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Figure 1. The optimal value of   n
 

2.1. A VERIFICATION OF THE 
THEORETICAL RESULT 

 
This theoretical result can be  

experimentally checked with the following C++ 
program : 
#include <stdio.h> 
#include <conio.h> 
#include <malloc.h> 
#include <math.h> 
#include <stdlib.h> 
int * aloc(int n) 
{ 



 int *p; 
 p=(int *)malloc(n*sizeof(int)); 
 return p; 
} 
void sort_ascending(int *v,int n) 
{ 
int i,j,temp; 
for(i=0;i<n;i++) 
for(j=i+1;j<n;j++){ 
if(v[i]>v[j]){ 
   temp=v[i]; 
   v[i]=v[j]; 
   v[j]=temp; 
}}} 
void gen(int *v,int n) 
{ 
int i; 
for(i=0;i<n;i++) 
v[i]=rand(); 
}   
int interclas(int *v,int *w,int *x,int p,int q) 
{ 
int i,j,k,ncomp; 
ncomp=i=j=k=0; 
while(i<p && j<q){ 
ncomp++; 
if (v[i]<w[j]) 
x[k++]=v[i++]; 
else 
x[k++]=w[j++]; 
} 
while (i<p) 
x[k++]=v[i++]; 
while (j<q) 
x[k++]=w[j++]; 
return ncomp; 
} 
int main() 
{ 
int p,q,*V,*W,*X,nc; 
printf(" Size of V = "); 
scanf("%d",&p); 
printf(" Size of  W = "); 
scanf("%d",&q); 
V=aloc(p); 
W=aloc(q); 
X=aloc(p+q); 
gen(V,p); 
gen(W,q); 
sort_ascending(V,p); 

sort_ascending(W,q); 
nc=interclas(V,W,X,p,q); 
printf(" C = %d\n",nc); 
getch();} 

The input of the program are: size p  and 

 of the arrays  and q  v1 2, , , pV v v 

 1 2, , , qW w w w   respectively. The program 

random generate the arrays, ascending sort the 
arrays, merge the arrays and generate 

 1 2, , , nX x x x   array with  

components. Are counted comparisons.  

n p q

An example is: 
Size of V = 78 
Size of W = 67 
C = 143 

In the above example , 78p  67q  , 
78 67 145n p q     . The medium number 

of comparisons is equal with: 
2 145 2 143n     . 
 

3. CONCLUSIONS  
 
In papers [1, 2] is determined the medium 

number of comparisons needed for merging 

the arrays  1 2, , , pV v v v   and 

 1 2, , , qW w w w 

n p q

. This number depends on 

the lengths, p and q, of these two arrays. In the 
presented  paper we proved that the medium 
number of comparisons can be computed 
depending on the sum of the length of these two 
arrays  

10n 
. Moreover, we showed that 

for , the medium number of 
comparisons can be approximated with 2n  .  
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