

 “HENRI COANDA” “GENERAL M.R. STEFANIK”
 AIR FORCE ACADEMY ARMED FORCES ACADEMY
 ROMANIA SLOVAK REPUBLIC

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER
AFASES 2014

Brasov, 22-24 May 2014

AN ASYMPTOTIC PROPERTY OF THE MERGING ALGORITHM

Paul VASILIU

 Faculty of Marine Engineering, “Mircea cel Bătrân” Naval Academy, Constanta, Romania

Abstract: This paper focuses on the study of the asymptotic behavior of the medium number of
comparisons from the merging algorithm on two sorted arrays, depending on the total length of the
resulting array obtained by merging. This paper presents a program written in C++ that supports the
theoretical result that was obtained.

Keywords: arrays, data analysis, merging, sorting.
MSC2010: 26A03, 26A06.

1. INTRODUCTION

Let it be the following arrays sorted in

ascending order V v and  1 2, , , pv v 

 , , ,W w w w 1 2 q . The result of the merging

operation of two arrays sorted in ascending or
descending order, V and W, is a new array, X,
that contains all the elements from V and W
sorted in ascending or descending order. The
algorithm of merging two arrays is well known.
The algorithm consists of iterating through the V
and W arrays and comparing each current
element from V with the current element

Let it be the following merging function
written in C++:
void merge(int *v,int *w,int *x,int p,int q)
{
int i,j,k;
i=j=k=0;
while(i<p && j<q){
 if (v[i]<w[j]){
 x[k++]=v[i++];
 }
 else
 x[k++]=w[j++];
}
 while (i<p)

iv jw

from W. The minimum value between and
 x[k++]=v[i++];

iv

j

 while (j<q)
 x[k++]=w[j++]; w is written to the resulting array, X. In the

merging algorithm, one of the V or W arrays is
iterated first and the elements of the other one
are written to the X array.

}
Let it be the sorted array in an ascending

order  1 2, , , nX x x x  n p q with  

elements, obtained by merging the V and W
arrays. Let it be C , the medium number of
comparisons, defined by the total number of
comparison divided by the number of possible
arrays V and W. The [1] and [2] papers present
the limits of the medium required number of
comparisons, , depending on the lengths, p C
and q of the V and W arrays. In this paper we
will prove that the medium number of
comparison required for obtaining the X array
sorted in ascending order can be approximated
with . It must be mentioned that this 2n 
number does not depend on the lengths of V or
W arrays.

The obtained result is validated with a
program written in C++ language.

2. FINDING THE NUMBER C

The operation of merging the V and W
arrays involves comparing the elements of these
arrays and updating the X array. Also, for
merging, one array will be iterated first.
Obviously, the total number of
 comparisons required for building the X array
is equal to , where is the number of n m m
remained elements from the array that was not
iterated. The minimum number of comparisons
equals to the minimum value between p and q
in the following case: if all the elements of the
array with the smallest number of elements, are
smaller than all the elements from the array with
more elements that the first one. If the elements
with the greatest values from V and will be W
the greatest elements from X array, then the
number of comparisons is equal to 1p q  .

Without reducing the generality we will
suppose that the V array will be iterated first. In
the end, we will double the value of the number
of comparisons by including the case when W
will be iterated first.

It is clear that the greatest element from
V Cwill influence the value of . Let it be the
final array sorted in ascending order, with n
elements  1 2, , , nX x x x  , with

1 2 nx x x   . In order to compute C , we

have to follow the next steps:
1. It is assumed that ix is the greatest

element from V and then there are i
comparisons required;

2. Compute the number of possible arrays
 for which V ix is the greatest element from V ;

3. Repeat steps 1 and 2 for all the possible
choices of ix ;

4. Compute the value of . C
If 1x is the greatest element from V , than

there is an array  1V x , with no element

that precede 1x , which means that only one

comparison is needed, (11 2 1).
If 2x is the greatest element from V , than

there are two possible array that contain this
element:  2xV  and , where  1 2,V x x  1x

might be an element from V . For both these
possible arrays, 2 comparisons are needed for
each array, (2x with 1x and 2x with 2x or

with 3x), in total 4 comparisons, (2 2). 2 1
If 3x is the greatest element from V , then

there are 2 possible values that can exists in V :

1x and/or 2x . In this case there are 4 possible

arrays with V 3x , being the greatest element,

 3xV  ,  1 3, xV x with 1 3x x ,

 3x2,V x with 2 3x x , with  3x1 2, ,V x x

1 2 3x x x  or 2 1 3x x x  . For each of the

four arrays, 3 comparisons are needed, (3x wit

1x , 3x with 2x and 3x with 3x or with 4x),

which makes a total of 12 comparisons,

(3 13 2 ).
In general, if ix is the greatest element from

, there are iV 1 possible elements that can
precede it and that can be elements of V . The
number of subsets with 1 elements is equal

1i

 i 
to 2  , so there 12are i V arrays with ix

being the greatest element. The total number of

comparisons equals to i 12i .
Because we supposed that the V array will

be first iterated, this implies that .
Suppose by contradiction that , could
be iterated first because the greatest element
from

1i n 
Wi n

X is now in V .
From the above considerations it follows that

 “HENRI COANDA” “GENERAL M.R. STEFANIK”
 AIR FORCE ACADEMY ARMED FORCES ACADEMY
 ROMANIA SLOVAK REPUBLIC

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER
AFASES 2014

Brasov, 22-24 May 2014

the total number of comparisons required for
iterating first the V array, and then W is equal
to:

 (1)
1

1

1

2
n

i

i

i







The total number of possible V arrays is equal
to:

1
1 1

1

2 2
n

i n

i


 


  1

1

2ii

 (2)

By symmetry, supposing that W is iterated first,
and after that V , it follows that the number of
comparisons equals:

1
1

1

2
n

i

i

i





 (3)

and the number of possible arrays W equals to:
1

1 1

1

2 2
n

i n

i


 


  (4)

This leads to a total number of comparisons
equal to:

 (5)
1 1

1

1 1

2 2
n n

i

i i

i
 



 
    

and the total number of possible arrays V and
 is equal to: W

 12 2 1 2 2n n    (6)

From the equality:

1

2 1
1

1

n
n x

x x x
x

 
    


 (7)

which occurs for , through derivation, and
then multiplication with

1x 
x and substitution of x

with 2 we have the following equality:

 
1

1

2 2 2
n

i

i

i n



     2n (8)

The medium number of comparisons becomes:

 2 2 2

2 2

n

n

n
C

  



 (9)

By processing (9), we obtain:

2
2

2 2n

n
C n

2 
  


 (10)

From the equality:
2 2

lim 0
2 2nn

n


 



 (11)

results that for values of big enough, C can
be approximate with

n
2n  .

The above chart of the function
2 2

()
2 2x

x
y x

 



, , 0x  1x  and

1
(1)

ln 2
y  proves that the approximation is

very good for values of . 10n 

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ox

 y
=

(2
*x

-2
)/

(2
x -2

)

Figure 1. The optimal value of n

2.1. A VERIFICATION OF THE
THEORETICAL RESULT

This theoretical result can be

experimentally checked with the following C++
program :
#include <stdio.h>
#include <conio.h>
#include <malloc.h>
#include <math.h>
#include <stdlib.h>
int * aloc(int n)
{

 int *p;
 p=(int *)malloc(n*sizeof(int));
 return p;
}
void sort_ascending(int *v,int n)
{
int i,j,temp;
for(i=0;i<n;i++)
for(j=i+1;j<n;j++){
if(v[i]>v[j]){
 temp=v[i];
 v[i]=v[j];
 v[j]=temp;
}}}
void gen(int *v,int n)
{
int i;
for(i=0;i<n;i++)
v[i]=rand();
}
int interclas(int *v,int *w,int *x,int p,int q)
{
int i,j,k,ncomp;
ncomp=i=j=k=0;
while(i<p && j<q){
ncomp++;
if (v[i]<w[j])
x[k++]=v[i++];
else
x[k++]=w[j++];
}
while (i<p)
x[k++]=v[i++];
while (j<q)
x[k++]=w[j++];
return ncomp;
}
int main()
{
int p,q,*V,*W,*X,nc;
printf(" Size of V = ");
scanf("%d",&p);
printf(" Size of W = ");
scanf("%d",&q);
V=aloc(p);
W=aloc(q);
X=aloc(p+q);
gen(V,p);
gen(W,q);
sort_ascending(V,p);

sort_ascending(W,q);
nc=interclas(V,W,X,p,q);
printf(" C = %d\n",nc);
getch();}

The input of the program are: size p and

 of the arrays and q  v1 2, , , pV v v 

 1 2, , , qW w w w  respectively. The program

random generate the arrays, ascending sort the
arrays, merge the arrays and generate

 1 2, , , nX x x x  array with

components. Are counted comparisons.

n p q

An example is:
Size of V = 78
Size of W = 67
C = 143

In the above example , 78p  67q  ,
78 67 145n p q     . The medium number

of comparisons is equal with:
2 145 2 143n     .

3. CONCLUSIONS

In papers [1, 2] is determined the medium

number of comparisons needed for merging

the arrays  1 2, , , pV v v v  and

 1 2, , , qW w w w 

n p q

. This number depends on

the lengths, p and q, of these two arrays. In the
presented paper we proved that the medium
number of comparisons can be computed
depending on the sum of the length of these two
arrays  

10n 
. Moreover, we showed that

for , the medium number of
comparisons can be approximated with 2n  .

REFERENCES

1. Dijkstra, E. W., Some beautiful arguments

using mathematical induction. Acta
Informatica 13(1982).

2. Knuth, D. E. The Art of Computer
Programming, Volume 3: Sorting and
Searching. Addison Wesley (1973).

 “HENRI COANDA” “GENERAL M.R. STEFANIK”
 AIR FORCE ACADEMY ARMED FORCES ACADEMY
 ROMANIA SLOVAK REPUBLIC

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER
AFASES 2014

Brasov, 22-24 May 2014

