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Abstract: In this paper the study of horizontal flight stabilization by using an automate system to control 
the pitch perturbations will be approached. This optimal control method is based on the extreme principle 
of Pontreaghin, finding the control function via the minimum transfer time from the initial (disrupted) 
position in the final position (target). The optimal control U* is determined, as well as the optimal 
trajectories which solve the optimal control problem (O.C.P.), by using a relay-type regulator with rapid 
action to stabilize this controllable system, suitable for aircrafts of rockets equipped with autopilot. 
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1. INTRODUCTION 

 
In case of horizontal flight, pitch 

(longitudinal) perturbation may occur, pitch 
angle   varying in this way. Considering an 
axis system Oxyz, the origin O being the CoG 
(mass center) of the aircraft, with Ox the 
horizontal flight axis, Oz as vertical axis and 
Oy as lateral axis, the pitch perturbation are 
characterized by the pitch angle  , (the 
rotation angle around Oy), lateral perturbations 
characterized by the rolling angle   (the 
rotation angle around Ox) and yaw angle   
(the rotation angle around Oz). These angles, 
together with their corresponding moments, 
are shown in figure 1. 

In previous studies, [1], [2] it was 
presented the automate control and absolute 
stabilization for a linearised dynamic system 
by using two (equivalent) methods: 

 the Lurie method, finding the Liapunov 
function [4-6, 9]; 

 the frequencial method V. M. Popov, using 
the transfer function, [8]. 
In this paper the study of horizontal flight 

stabilization by using an automate system to 
control the pitch perturbations will be 
approached. This optimal control method is 
based on the extreme principle of 
Pontreaguine, [7], finding the control function 
via the minimum transfer time: 

  *
01min ttt  , from the initial (disrupted) 

position:  0
0 ;t0 XP  in the final position 

(target):  1
1;tXO . 

So, the optimal control U* is determined, 
as well as the optimal trajectories  

 tttXXX ;;;; 10
10  which solve the optimal 

control problem (O.C.P.), by using a relay-



type (on-off) regulator with rapid action to 
stabilize this controllable system, suitable for 
aircrafts of rockets equipped with autopilot. 

 
 
In the previous study it was determined the 

Liapunov function , with , 
ensuring the absolute global stabilization 
towards the point O in the phase space 

 and finding the 

parameters r, C
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a , and   is an arbitrary 

non-linear control function;    respects the 
sector conditions. The system is fully 
controllable because the rank 

  3;; 2  bAAbbR  
 

2. MATHEMATICAL DETERMINATION 
 

 In the following section of the paper it will 
be presented the optimal control in the space 
Oz1z2z3 for the diagonal system (see [3]), as: 

uburzz   , detailed in the form:  
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  0,z,u,tHH0H ****
min   

1u1u *   

As a function of u, the Hamiltonian H is a 
linear dependence: 

  CBuuHH   

  0uHH1u *
min   Fig. 1: The axial moments and angles of an airplane 

If , it results that H is an 

increasing function, and if u , it 
results that H is a decreasing function, as 
shown in figure 2. 
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Fig. 2: The dependence H = H(u) 
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Remark: 
The regulator is a relay-type one, so 

. For 1u*   *t;0t
*

 the sign of F may be 

constant, so  keeps its value   along the 
whole above mentioned time interval. It means 
that in this case no relay commutation will 
occur. This situation is possible if C

u 1

1, C2 and 
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C3 are simultaneously either positive or 
negative. 

  
 
 
 
 
 
 

Fig. 3: Relay commutation 
a) no commutation; 
b) one commutation; 
c) two commutations. 
By varying the signs of C1, C2 and C3, the 

function F(t) may have one or maximum two 

sign changes for  *t;0t , so  will change 

its value too, accordingly to these. So one or 
maximum two relay commutations may occur 
in the time interval. 

*u

In figure 3 are presented 3 examples of the 
commutation function F(t). 

In this case the Hamiltonian  ,z,u,tH *  
is computed by splitting the time interval: 

    *
11 t;;0t   if F(t) has a single sign 

change (in the moment 1t  ), as shown in 
figure 3b; 

      *
2211 t;;;0t   if F(t) has a 

double sign change (in the moments 1t   

and 2t  ), as shown in figure 3c. 

Trajectories  *
ii u,tzz   must be 

computed in accordance to the above 
mentioned. 

In conclusion, the control possibilities 
depend on analysis of relay commutation, 
computing procedures for F(t) being 
necessary. As shown in figure 3, a such 
procedure must be able to solve the equation 

, and to assign the correct values to the 

commutation variable: 

  0tF 

  tFsignu*  .   

The compatibility of choosing C1, C2, C3 
and initial conditions (the starting position of 
the flying object) with the trajectory equations 
will be conditioned by positive values of time 

 0t   and   0,z,u,tH ****  . 
 
2.1. Un-commutated Trajectory. It 

results from (1) the trajectory equations: 
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F(

where  3210 ;,A   is the initial position.  

By eliminating the time between the 3 

above equations: 
*
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z
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
 , the trajectory 

results as the intersection of two surfaces, 
starting in the moment  from A0t  0: 
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It may be noticed that the surfaces 
 311 zzz   and  322 zzz   are crossing the 

lanes (zp 1Oz3) and (z2Oz3) respectively. 
The goal for this trajectory    ;tzz  is 

to reach the target in origin:   3,1i,0t* zi . 

From   0tz *
3   it results: 

*
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              (9) 

As time must be positive, the following 
restriction is obvious: 
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Similar, z1 and z2 from (8) must be null in 
the same time with z3. 
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In conclusion, if the initial coordinates 1  

and  respect the constraints (10), and with 

an arbitrary value of , the ending point of 

the trajectory will be the origin O(0; 0; 0). 

2

3

The trajectory may be plotted, either by 
using its parametric equations (7) or as 
intersection of two surfaces (8). 

The mathematical determination of the 
parametric link between C1, C2, C3 having the 
same sign (in the non-commutated case) is 
worked out by recalling the condition: 

  0H:,z,u,tH min
****       

The optimal trajectories A0O are 

    
1u  u 

, corresponding to the values 
 and , respectively. 1

Two possible trajectories are shown in 
figure 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Un-commutated trajectories 
 

Finally, it comes out that: 
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where  must be the opposite sign of  sign(F), 
defined in (5). So, it results a relationship 
involving C



1, C2, C3, that has to be respected. 
The conclusion is that only two of these three 
constants are arbitrary. 

A non-commutated case that may be 
effectively approached is , , 

and linked by (11). 

0C3  0C,C 21 

2.2. One-commutation trajectory. 
In this case the relay switches at a moment 

. The case ** t 0C3  , ,  is 

studied further. 

0C1  0C2 

Considering 0rr 12  , and denoting 

nr2  , mr1  , with , F 
becomes: 
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where  is the switching moment, and it may 
be computed as it follows:  
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It’s obvious that 1
C

C
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2*  . 

In this case, the starting point is 
 321 ;;B  , at the moment , with the 

command 

0t 

  1CCsignu*
0C;0C
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
 . 

This trajectory -   - will commutate 

 1u*   at the moment , in the point *tt 
 321 ;;Q  . From this moment on, the 

trajectory will go on with the curve , till the 

target 


 0;0;0O . The point  *;Q   is similar 

to A0, the starting point in the previous (un-
commutated) case, but with the initial moment 

t0 changed from 0t0   to  and with 

recalculated the final time, t

*
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*.  
So, the minimal final time will be 

, for the trajectory described 

above: 
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The phenomena are the same if 

, , , when in the initial 

moment  the command becomes 

. The trajectory starts from a point B

0C3 

1u* 

0C1 
t 0 

u*

0C2 

1

0



’, 

switches to  in the  moment and 
will continue till the final point, O: 

*t 

       OQ'QB ''    . 
The trajectory  must end in O (a fix 

point) respecting the compatibility conditions. 
In the following lines, the appropriate 
mathematical approach will be described. 
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or of type (8): 
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The coordinates of the point Q are obtained 

from (7’), at the moment : *t 
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The solutions for the second curve, QO, 

with  and  corresponding to 

the first curve, BQ, are of type (7) too: 
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When the trajectory reaches the origin, its 
parametric equations must nullify: 
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compatibility constraints: 
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Similar compatibility constraints must be 
respected by the coordinates  , which has to 

be computed from (7”), replacing i  with the 
one computed with (12).  

 
3. CONCLUSIONS 

 
The authors consider that their contribution 

is important because: 
1. It synthesizes the a.r.a.s. method and 

system optimal control; 
2. The approached application belongs to 

hydro aerodynamics (ballistics) as a 
critical case, one (characteristic) root 
being null  03 r ; 

3. This dynamic system was optimal controlled, 
the optimizing parameter being the minimum 
stabilization time, and using a relay-type (on-
off) regulator.  
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