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Abstract: An important aspect of the distribution is that of the stationary. Please note that here we 
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1. INTRODUCTION 
 

The natural significance of stationary of a 
probability distribution becomes apparent if 
we imagine a large number of processes that 
occur simultaneously. Let it be, for example, N 
particles that are running independently the 
same type of random motion. At time n the 
medium number of particles in the state  is 

. With a stationary distribution these 

mean values remain constant and let observe 
(if N is large enough for applying the law of 
large numbers) a macroscopic equilibrium 
state maintained by a large number of passes 
in opposite directions. In physics, many 
statistical equilibriums are of this kind, ie they 
are the exclusively simultaneous result 
observing of many independent particles. It is 
a typical case of a symmetric random motion 
(or diffusion); if more particles are observed 
then, after a sufficiently long time, about half 
of them will be to the right of the origin, and 
the rest to the left of them. However, it is 

known (citing law sinus) that most individual 
particles do not behave such that, spending a 
greater part of the time on the same side of the 
origin. 
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2. SOME FEATURES ABOUT STATES 

OF A MARKOV CHAIN 
 

Definition 1. [1], [4] The state  leads to 

state  and we note  if there exist a 

number   such that . We say that 

the state  communicate with the state  

and we note that with  if  

and  . 
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Definition 2. [1], [2], [5].  A set of states C is 
closed if no state outside of C can not be 
touched by any  of the states of C. The 

smallest closed set that contains the C is called 
the closure of C.   
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Definition 3. [1], [2], [5] A state which 

forms a single closed set is called absorbing 
state. 

kE

A Markov chain is called irreducible if 
there is no other closer set than the set of all 
states. 

Obviously, C is closed if and only if 
 whenever j is on C and k is outside of 

C, in this case, from Chapman-Kolmogorov 
equations we can see that  for each n. 

So, it follows: 
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Theorem 1. [3], [7], [9] If in nP  matrix we cut 
all the lines and columns that correspond to 
the outside states of the set C, we will obtain 
stochastic matrix which continues to maintain 
the fundamental relations of Chapman-
Kolmogorov. 

That means that we can define on C a 
Markov chain and this subchain can be studied 
independently of all other states. 
Remark 1. The state  is absorbing if and 

only if ; in this case the matrix of the 

last theorem is reduced to only one element. 
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The closure of a state  is the set of all 

states that can be reached from it 
(inclusive ). This remark can be 

reformulated as follows: 
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Definition 4. [8] A Markov chain is 
irreducible if and only if each state can be 
reached from every other state. 
Application 1. [8] In order to determine all 
closed sets is sufficient to know which  

tend to zero and which are positive. Therefore, 
we use an asterisk to indicate the positive 
elements and we will consider the matrix 

jkp





































*0000*000

000000*00
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Bet on the fifth line an asterisk appears in fifth 
place and, so ; the state   is 

absorbant. The third and the eighth lines 
contain only a positive element each, and it is 
obvious that E and 8E rm a closed set. The 

crossings from 1E  are possible in 4E  and 9E , 

 from there only in 1E  E , . 

Consequently, the three states  ,  ,   

form another closed set. 
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We order now the states as follows: 

'4E,,' 825 EEE1 ,3 E E  

6E9 ', E774 ,' EEEEE6 8 '2 ,' E  . 

Elements of the matrix P are arranged in this 
way and, then, P takes the form 
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In this form the closed sets( , 

 and (   appear 

clearly. From '  it is possible a pass in each 

of the three closed sets and, therefore, the 
closure of  is the set of states , , 

, ' , ' , ' , ' . From '  it is 

possibile a pass in  and in '  and, so, in 

every closed set. The closures of  and of 

'  consist of all nine states. 
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Suppressing all the lines and all the 
columns from the outside of a closed set we 
get three stochastic matrices 
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and P’ does not contain any other stochastic 
submatrix. 

We consider a fixed state  and we 

suppose that, initially, the system is in state . 

Whenever the system passes through the state 
 the process is repeated from the beginning 

as it has been the first time. It is clear, 
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3. ERGODIC PROPERTIES OF THE 
IRREDUCIBLE CHAINS 

Defi bility distribution 

therefore, that a return to  is a recurring 

event. If the system starts from a different state 
 then, passing through  becomes a 

recurring event delayed. Therefore, Markov 
chains appear as a special case of recurrent 
events simultaneously. 
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Each state  is characterized by its 

recursive time distribution
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 is 

the probability that the first return to  occur 

at time n. From
 

, we can calculate the 

probability  using obvious recurrent 

relations  
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Relationships (1) express the fact that the 
probability of a first return to the state , at 

the moment n, is equal with the probability of 
a return at the time n, minus the probability 
that the first return to take place at a time v = 
1,2, ..., n - 1, and is followed by a repeated 
returning at time n. 

jE

The sum 

                                 (2) 





1

)(

n

n
jj ff

is the probability that, starting from the state 
, the system to get back to the state . jE

Theorem 3. [6] In an irreducible Markov 
chain, all of the states belong to the same 
class: they are all transitory, all zero-
persistent states, or all non-zero persistent 
states. In each case they have the same period. 
In addition, each state may be achieved from 
any other state. 
Corollary 1. [6] In a finite Markov chain there 
is no zero state and it is impossible that all of 
the states to be transient. 

 
nition 5. [8] A proba
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If the initial distribution ka  is going to be 

nary, then the absolute probabilities 

                                   (3) 

statio  (n)
ka  

are nd indepe ent of the time n, ie k
(n)
k aa  . 

The following theorem is often described 
as a tendency towards equilibrium. 
Theorem 4. [7] An irreducible periodically 
Markov chain belongs to one of the two 
classes: 

i) All states are either transient or are all 

null state; in this case  when n  

for each pair j, k and there is no stationary 
distribution. 

ii) All the states are ergodic, ie 
0lim )( 

 k
n

jk
n

up                                     (4) 

Where  corresponds to the medium 

recursive time of . In this case 
ku

kE  ku  is a 

stationary distribution. 
A weaker formulation can highlight the 

implications of this theorem. Thus, if (4) takes 
place, then for an arbitrary initial distribution 

  ka

          
j

k
n

jkj
n

k upaa )()(              (5) 

Therefore, if there is a stationary 
distribution it is necessarily unique and the 
distribution at the time n tends to her 
independently from the initial distribution. The 
only alternative to this situation is 
that . 0)( n

jkp

Demonstration 



By the theorem 3, the relation (4) is 
keeping any time as long as its states are 
ergodic. For proofing the affirmation (ii), the 
above, we point out, first of all, that 

1 ku                                          (6) 

This follows directly from the fact that, for 
fixed j and n, the quantities  

have the sum equal with unity, such that 
 for each N. For n = 1 and 

 we have the left side tending to , 

and the general term from the right side of the 
sum tending to . Adding an arbitrary 

number, but finite of terms we observe that 
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Summing these inequalities for all k we 
obtain, in each part the finite quantity,    ku

This shows that in (7) the inequality is not 
possible and, therefore, 

                                   (8)  jkjk puu

If we put  we find that  

is a stationary distribution, such that there exist 
at least one distribution like that. 

  1 jkk uuv kv

Let  a certain distribution satisfying 

equality (3). Multiplying (3) by , and 

summing after  j, we deduce, by induction, that  

 kv
)(n
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If , we obtain n
           rrr uuvvv  ...21         (10) 

which completes the proof of point (ii). If 
states are transient or zero state and   is a 

stationary distribution then equations (9) 
remain valid and  which is obviously 

impossible. 

kv

0)( n
vrp

As a consequence, a stationary distribution 
may exist only in the ergodic case and the 
theorem is proved. 

 
 
 
 
 
 
 
 
 

4. APPLICATION 

 
Fig. (1) 

A soldier enters on the battlefield which 
contains 10 charging points of weapons. From 
each power point he can move to another point 
neighbor. He chooses with equal probabilities 
either supply points which are available. For 
example, from the no.1 building he moves 

with the same probability
2

1
, in the no. 2 and 

no. 3 buildings. From no.2 buildings he moves 

with the probability 
4

1
in buildings no.1, no.3, 

no.4 and no.5 etc. 
We will determine the stationary 

distribution of probabilities (the limit 
probability) with each soldier is arming in 
every collecting point. 

We note with  the collecting point in 

which one the soldier will arm at the time n. 
The chain 

nE

 nE  is Markov, with the set of 

states 1, 2, … 10 and transition probabilities 
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All the states communicate with each other 

such that they form a single class (obviously 
positive). We have ii yp  ;  obtained from 

the solving the system (8) with the conditions 
(10): 
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5. CONCLUSIONS 

 
So if the soldier is in the initial point i with 

probability ii yp  , 101  i , then in every 

minute there exist the same probability 
 ii yp 

ip

n
ii py )(   that the soldier to be in i 

point.  On the other hand, even if the initial 
probabilities  are different of  the ergodic iy



character of the chain assures us that after 
many moments, probability that the soldier to 
be the point j will be close to the limit 
probability, . He will be found most 

frequently in the no.5 weapons collection point 
where he returns on average every 6 
considered moments. 

jy

In conclusion we can say that it is usually 
easy in terms of comparison, to decide whether 
there is a stationary distribution and therefore 
if a given irreducible chain is ergodic. 
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