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Abstract: An important aspect of the distribution is that of the stationary. Please note that here we
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1. INTRODUCTION

The natural significance of stationary of a
probability distribution becomes apparent if
we imagine a large number of processes that
occur simultaneously. Let it be, for example, N
particles that are running independently the
same type of random motion. At time n the
medium number of particles in the state E, is

Na,g”). With a stationary distribution these

mean values remain constant and let observe
(if N is large enough for applying the law of
large numbers) a macroscopic equilibrium
state maintained by a large number of passes
in opposite directions. In physics, many
statistical equilibriums are of this kind, ie they
are the exclusively simultaneous result
observing of many independent particles. It is
a typical case of a symmetric random motion
(or diffusion); if more particles are observed
then, after a sufficiently long time, about half
of them will be to the right of the origin, and
the rest to the left of them. However, it is

known (citing law sinus) that most individual
particles do not behave such that, spending a
greater part of the time on the same side of the
origin.

2. SOME FEATURES ABOUT STATES
OF A MARKOV CHAIN

Definition 1. [1], [4] The state E, leads to
state E, and we note E, — E if there exist a
number n >0 such that p;.”) > 0. We say that
the state E, communicate with the state E,
and we note that with E, <> E, if £, > E,
and £, > E, .

Definition 2. [1], [2], [S]. 4 set of states C is
closed if no state outside of C can not be
touched by any E, of the states of C. The

smallest closed set that contains the C is called
the closure of C.



Definition 3. [1], [2], [5] 4 state E, which

forms a single closed set is called absorbing
state.

A Markov chain is called irreducible if
there is no other closer set than the set of all
states.

Obviously, C is closed if and only if
P, =0 whenever j is on C and £ is outside of

C, in this case, from Chapman-Kolmogorov
equations we can see that pf =0 for each .

So, it follows:

Theorem 1. [3], [7], [9] If in P" matrix we cut
all the lines and columns that correspond to
the outside states of the set C, we will obtain
stochastic matrix which continues to maintain
the fundamental vrelations of Chapman-
Kolmogorov.

That means that we can define on C a
Markov chain and this subchain can be studied
independently of all other states.

Remark 1. The state E, is absorbing if and

only if p,, =1; in this case the matrix of the

last theorem is reduced to only one element.
The closure of a state £, is the set of all

states  that
(inclusive £, ).

reached from it
remark can  be

can be
This

reformulated as follows:
Definition 4. [8] A4 Markov chain is
irreducible if and only if each state can be
reached from every other state.

Application 1. [8] In order to determine all
closed sets is sufficient to know which p,

tend to zero and which are positive. Therefore,
we use an asterisk to indicate the positive
elements and we will consider the matrix

000 *0O0O0O0 *
o * * 0 * 00 0 *
0 000O0O0OO0™=*OPO0
*0 0 0 0 0 0 O0O0
P=/0 0 00 * 00 00
0O *0 0 O0O0O0O00O0
0O *0 00 * * 00
00 * 0 0O0O0O00O0
000 *0O0O0O0 *

Bet on the fifth line an asterisk appears in fifth
place and, sop;;=1; the state FE, is

absorbant. The third and the eighth lines
contain only a positive element each, and it is
obvious that £, and E; form a closed set. The

crossings from E, are possible in £, and E,,
and from there only in E, , E, , E,

Consequently, the three states E, , E, , E,

4
form another closed set.

We order now the states as follows:
E,/'=E, E,'=E, E,'=E,,E,'=E,,E,'=E,,
E,/)=E,,E,'=E, E;'=E,,E,'=E,.

Elements of the matrix P are arranged in this
way and, then, P takes the form

*00 000 O0O0O0
00 * 0 0O0O0O0O
0O * 0 00O0O0O0O
0000 =** o000
P=/0 0 0 0 * * 0 0 O
0 00 * 0 0 00
0000 O0O0 * * *
000 0O0O0™*O0O0
In this form the closed sets( E,'),
(E,',E;') and (E,,E,"\E,") appear

clearly. From E,' it is possible a pass in each

of the three closed sets and, therefore, the
closure of E,' is the set of states E,', E,',

E)S, E,, E', E/', E,'. From E;' it is
possibile a pass in E,' and in E,' and, so, in
every closed set. The closures of E,' and of
E,' consist of all nine states.

Suppressing all the lines and all the
columns from the outside of a closed set we
get three stochastic matrices

k
s 0 * *
0
*0 0
and P’ does not contain any other stochastic

submatrix.
We consider a fixed state E_/ and we

suppose that, initially, the system is in state £, .

Whenever the system passes through the state
E, the process is repeated from the beginning

as it has been the first time. It is clear,
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therefore, that a return to £, is a recurring

event. If the system starts from a different state
E, then, passing through £, becomes a

recurring event delayed. Therefore, Markov
chains appear as a special case of recurrent
events simultaneously.

Each state E, is characterized by its

recursive time distribution { f /.(”)}. Here f /.(”)
the probability that the first return to £, occur

at time n. From pg.“), we can calculate the

.. (n) . .
probability /" using obvious recurrent
relations
=0 17 =00 =Py
f( — p<”n> f(l)l’ijn ) f(z)p;" 2) _ _fj<n ”pj.
(1

Relationships (1) express the fact that the
probability of a first return to the state £, at

the moment 7, is equal with the probability of
a return at the time n, minus the probability
that the first return to take place at a time v =

1,2, .., n - 1, and is followed by a repeated
returning at time 7.
The sum
S i Zf j(n) (2)
n=1

is the probability that, starting from the state
E,, the system to get back to the state £ .

Theorem 3. [6] In an irreducible Markov
chain, all of the states belong to the same
class: they are all transitory, all zero-
persistent states, or all non-zero persistent
states. In each case they have the same period.
In addition, each state may be achieved from
any other state.

Corollary 1. [6] In a finite Markov chain there
is no zero state and it is impossible that all of
the states to be transient.

3. ERGODIC PROPERTIES OF THE
IRREDUCIBLE CHAINS

Definition 5. [8] 4 probability distribution
{vk } is called stationary if

Vi = ZV:-PJJ 3)
If the initial distribution a, is going to be

stationary, then the absolute probabilities {a,ﬁ”)}

m _
=a,.

are independent of the time », ie g}
The following theorem is often described

as a tendency towards equilibrium.

Theorem 4. [7] An irreducible periodically

Markov chain belongs to one of the two

classes:

i) All states are either transient or are all

null state; in this case pﬁf’t - 0 when n —>

for each pair j, k and there is no stationary
distribution.
ii) All the states are ergodic, ie

limp(z) =u, >0

n—»0

Where u,

recursive time of E,. In this case {u,} is a

4

corresponds to the medium

stationary distribution.

A weaker formulation can highlight the
implications of this theorem. Thus, if (4) takes
place, then for an arbitrary initial distribution
a

a" = Za Py —u, (5)

Therefore, if there iIs a stationary
distribution it is necessarily unique and the
distribution at the time # tends to her
independently from the initial distribution. The
only alternative to this situation is
that p'y> — 0.

Demonstration



By the theorem 3, the relation (4) is
keeping any time as long as its states are
ergodic. For proofing the affirmation (ii), the
above, we point out, first of all, that

Du, <1 (6)

This follows directly from the fact that, for
fixed j and n, the quantities pj’,’() (k=123,..)
have the sum equal with unity, such that
u,+u,+..+u, <1 for each N. For n = I and
m —> oo we have the left side tending tou,,

and the general term from the right side of the
sum tending tou,p,. Adding an arbitrary

number, but finite of terms we observe that

U, = Zuvpvk (7)

Summing these inequalities for all £ we
obtain, in each part the finite quantity, ZM .

This shows that in (7) the inequality is not
possible and, therefore,

Uy = Z” Pk (8)

If we put v, = uk(Zuj )_1 we find that v,

is a stationary distribution, such that there exist
at least one distribution like that.

Let {v,} a certain distribution satisfying

(n)

equality (3). Multiplying (3) by p}’, and

summing after j, we deduce, by induction, that

v, =2.vpy ©)
If n — oo, we obtain
v, = (vl +v, +...)ur =u, (10)

which completes the proof of point (i7). If
states are transient or zero state and {v, } is a

stationary distribution then equations (9)
remain valid and p”’ — 0 which is obviously

impossible.

As a consequence, a stationary distribution
may exist only in the ergodic case and the
theorem is proved.

4. APPLICATION

The soldier

The battlefield

Fig. (1)

A soldier enters on the battlefield which
contains 10 charging points of weapons. From
each power point he can move to another point
neighbor. He chooses with equal probabilities
either supply points which are available. For
example, from the no.l building he moves

with the same probability% , in the no. 2 and
no. 3 buildings. From no.2 buildings he moves
with the probability %in buildings no.1, no.3,

no.4 and no.5 etc.

We will determine the stationary
distribution of probabilities (the limit
probability) with each soldier is arming in
every collecting point.

We note with E, the collecting point in

which one the soldier will arm at the time #.
The chain {E,} is Markov, with the set of

states 1, 2, ... 10 and transition probabilities
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All the states communicate with each other
such that they form a single class (obviously
positive). We have p, =y,; y, obtained from

the solving the system (8) with the conditions
(10):

1 1
= Zyz +Zy3

1 1 1 1
T T

1 1 1 1
EREPIE AN

Y4 :%y2 +éy5 +%J’7 +i)’g
1 1 1 1 1 1
Vs :Z)Q +Z)’3 +ZJ’4 +Zy6 +ZJ’8 +Z)’9
1 1 1 1
Y6 T, V3T Vs T Yo T Mo
1 1
Y7 :ZY4 +Zy8

1 1 1 1

L e el
1 1 1 1

9Ty
1 1

Y10 =, Y6 T

1
1777700 7 g
1
<:>y2=y3:y4:y6=y8=y9=g
1

b=t
> 6

5. CONCLUSIONS

So if the soldier is in the initial point i with
probability p, = y,,1<i<10, then in every
minute there exist the same probability
Y, (pl.(") =p, :yi) that the soldier to be in i
point. On the other hand, even if the initial
probabilities p, are different of y, the ergodic



character of the chain assures us that after
many moments, probability that the soldier to
be the point j will be close to the limit
probability, y,. He will be found most

frequently in the no.5 weapons collection point
where he returns on average every 6
considered moments.

In conclusion we can say that it is usually
easy in terms of comparison, to decide whether
there is a stationary distribution and therefore
if a given irreducible chain is ergodic.
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