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Abstract: In this paper there are studied two kinds of problems about a fluid flow or a hot 

transfer regime. The first problem refers to a parabolic type of a laminar or viscous fluid flow or 

a hot transfer in a plane or cylindrical domain. It is considered an inverse problem: knowing the 

data on the boundary of the domain, a method to find the viscosity coefficient or the hot transfer 
coefficient is given. The best numerical results may be obtained when the number of 

measurements is increased. The second problem refers to the free boundary flow in the presence 

of a curvilinear symmetrical obstacle. There are considered the Helmholtz problem when the fluid 
is unlimited and the Rethi-Jacob scheme when a jet of fluid is forked by a symmetrical obstacle. 

The problems where studied using singular integral equations and the shapes of the maximal drag 

obstacle are obtained.  
 

Keywords: parabolic equations, the trapeze formula, viscosity coefficient, inviscid jets, 

nonlinear operator, optimal design. 

 

1. DETERMINING THE COEFFICIENT FROM THE PARABOLIC TYPE 

EQUATION 

 

The mathematical modeling of viscous fluid flows, the heating and cooling problems, 

metal melting, ice melting, wood drying, dispersion or aggregated, mass and heat transfer 

lead to partial derivate equations of a parabolic type. The viscosity coefficients appear in 

these equations, humidity coefficients or dispersion – they can be both constant and 

variable. We present a method to determinate these coefficients when they are not 

stationary, in the plane case or cylindrical, having input data regarding the speed or the 

tension on the boundary, or the temperature and the thermal flow changed with the 

exterior, [8] [3]. 

A. We consider the parabolic equation: 
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Representing the plane flow between two plates or the thermal process delimited by the 

x=0, x=h plates. For start we will consider the homogeneity case E(x,t)=0 and assume 

that we have the following information w(x,t): 
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The conditions (2)-(4) are actually Sturm-Liouville type conditions and have physical 

meanings related to the according studied problems: so, viscous fluids the conditions (3) 

of Couette type [3] show the mobility of the plates with speeds g(t),h(t) and the relation 

(4) shows the tensions that emerge between the fluid and the plates. For the caloric 

problem, w is the temperature, (3) the walls heating, (4) the caloric flow between the 

inside and the outside trough the walls. 

Having these data we will present methods to find the coefficient k(t) with the 

conditions (2)-(4) or by weakening them. In order to perform calculations in these 

continuous environments we impose the non polarity conditions for data, meaning:  

 

)()0(),0()0(),()0(),0()0( '' lfHfGlfhfg                                                           (5) 

along with the continuity of the simple and partial derivates. 

 

      We integrate the equation (1) with respect to x 
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We apply in the integral the trapeze formula and together with (3) we have: 
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If in (1) appears also F(x,t) then besides H-G we add U= 
l

dxtxF
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),( . We notice that k(t) is 

retrieved and we have not use (2)  f(x) – although, this will definitely be used if  w(x,t) is 

numerically determined in (8) we notice the validity condition  GH  meaning the plates 

are not moving parallel with Ox simultaneous with constant speed. The formula (8) will 
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In the end results, with these data, applying the trapeze formula, 
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Lets’ obtain k(t) if one information, either H(t) or G(t) is missing – the case when G(t) is 

missing from (3), (4); we apply the same operations: 
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We replace (12) in (10) and we will apply the Dirichlet formula for the iterate integral 
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In (13) we applied the trapeze formula, formulas (2) and (3), obtaining (15) comparable 

with (8); the trapeze formula can be applied on more nodes obtaining a formula 

comparable with (9). If G(t) is present and H(t) missing the reasoning in identical 

obtaining: 
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It can be noticed that the formulas (8) (15) (16) are not identical; for a greater precision 

we must use the (9) type formulas; because of the data structure and presentation we can 

build an optimal control problem to exactly determine k(t) [1]: Determine the k control 

that minimizes the functional I(k) 
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With the restrictions (1) (2) (3) if minimum is zero then w is the solution satisfying (1) (2) 

(3). 

B.  The case of cylindrical coordinates (coaxial cylinders with radius 21 rr  ) or the 

 circular crown domain; it is studied considering the equation and conditions [3] [8] for 

Couette type movements or with gravity and pressure difference trough F(r,t) 
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Using the same rationale we get k(t): we apply the trapeze formula after we integrate with 

respect to r (18).  
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For a greater precision we split the interval  21,rr  in n parts with 
n

rr
iri

12   and the 

integral from (22) we apply the trapeze formula, obtaining a type (9) formula 
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If in (18) appears F(r,t)  then in formulas  )25)(23)(23( '  U is added the upper side of the 

fraction  ),(1122 trUGrGr    where 
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can be noticed that in  )23)(23( '  we have the validity condition for the experimental case 

so that )()( 1122 tGrtGr  . 

If we have the circular cylinder of radius R, Rrr  21 ,0  and  )(1 tG  is missing, we 

integrate (18) and apply the trapeze formula on the interval [0,R] obtaining k(t : 
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Since the approximation is wide, we split [0,R] in  n  parts with 
n
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In an analog manner we can formulate the optimal control problem for the determination 

of k(t) : Determine the control k(t) which minimize the functional I[k] [1]: 
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with the restriction (18) (19) (20). The method can be applied numerical and experimental 

in biology, thermal processes, drying, melting, diffusion etc. with practical data 

observable on measure machines, determining this way the coefficient k(t). 

 

2. THE STUDY OF POTENTIAL PLANE FLOWS WITH STREAM LINES FOR 

INCOMPRESSIBLE FLUIDS IN THE PRERSENCE OF SYMMETRICAL 

CURVILINEAR PROFILES 

 

We consider the potential plane flows, with free lines, for incompressible fluids in the 

presence of symmetrical profiles in two cases: first case – curvilinear obstacle in free 

unlimited stream (based on Helmholtz schema) [9] and the second case – fluid streams, 

upstream delimited by the height h, forked by a symmetrical obstacle, the stream lines at 

infinity having the asymptotic angle   (the Rethi-Jacob model) [2]. 

The obstacles have the same length L and in each situation we’ll have three sub-cases: 1
st
 

case – curvilinear obstacle convex toward downstream, 2
nd

 case – straight perpendicular plate 

and 3
rd

 case – curvilinear obstacle convex toward upstream (fig. I1, I2, I3) [6] and for the 

second situation we have the same obstacles in the presence of the limit stream with  , 

asymptotic angle (fig. II1, II2, II3). 

 The studies we made [4], [5] considered the as helping canonical domain – the half 

plane  0,   i   and the Jukovski function 0
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the complex potential were determined f = f( ) for the two situations  
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APPLIED MATHEMATICS, COMPUTER SCIENCE & IT 
 

384 

0
V

0
V

dz

d

d

df

dz

df 


  we get  )(zz   and the correspondent  wfz DDDD ,,,    with  


D  conformal 

transformations, and trough transitivity  f=f(z), w=w(z) . 









1

1 1

)(1
)(










s

ds

s

s
 ,               







1

1 1

)(1
)(






s

ds

s

st

i
   

 

The singular integral equations resulted from determining  )(  which links  dual  )(  

with  )(t ,  )1,1(  are, for the two situations the followings [4] [5] [6] (obtained with 

Sohotski – Plemelj formula) 
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For the 1
st
  situation the upstream asymptotic angle is 0  and for the 2

nd
 situation:  
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where k is the connection report from which we find the values for a parameter, knowing k and 

the speed distribution on the profile  )(VV   or  )1,1(),(  tt . 

The formulas (27) allow solving reverse problems, with )(t or  )(  given on the profile, the 

profile shape is determined, for cases (26), (28),  )(VV    will be given and )( determined, 

and for (27) of the plate 2   is determined  )(),(  ttVV  . 

The aero dynamical and geometric parameters for the presented 6 cases are represented in the 

tables below [4] [5] [6]. 
 

 

Cases I1, I2, I3 based on Helmholtz schema [6]: 
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The speed distribution on the profile: 
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The curvilinear obstacle’s tangent angle: 
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Pressures resultant: 
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The distribution 3V  was obtained by extending J[t] with the Jensen inequality for 
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The resistance coefficient: 
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Cases II1, II2, II3 limited stream of width  h , forked by obstacle: 
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The value of angle   on the profile: 
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The asymptotic angle )(h  downstream: 

 


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

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)(ah  is descendant with respect to h and ascendant for )(  [6] [7]. 
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ah

    we get case I  from II. 
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h

L
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For  k  and  L  fixed we get: )()()( 321 hhh   . We can notice that )(hCx  is ascendant with 

respect to 0
)(
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
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As a result we obtain a way to go from 2
nd

 case, trough flow’s width enlargement 

 hu , , to the 1
st
 situation – obstacle in unlimited fluid (Helmholtz version) [7] [6]. 

We represent )(hCx  with the help of the asymptotic angle  :  )()( 1   fuu . 
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We’ve got the general case )()( xx ChC   including the C. Iacob formula for 

)()()( 22 xxx ChChC  . 

Analyzing the values of )(),( kChC xx for the plate, obtained by C. Iacob [2], S. Popp [9], and 

the tables of  )(hCx  for the curvilinear obstacle )(hCx  [4], in the last situation II3 there is a 

case where L=1 when    ; in this case 412,6;005,1)( ***  kaa   and 

.156,0/1 **  kh  We get the following conclusions regarding the movement behavior and 

validity conditions for )(hCx  with respect to xC  (unlimited stream), the optimal deflector for 

maximal resistance [4]. 
 If : 

a) );cos1(20 3
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x  

b)   ;623,04412,6 ** *

hCCkk h

x

h

x  )( *hh  ; 

c) 
*hh   and ;936,0

8
)( 3 

e
ChCh xx


 in this case h>0,156L. 

 

Table 1 

K 2.245 3 4 5 6.142k0 7 
  1.571 1.1871 2.251 2.623 3.142 3.359 

a
* 

1.494 1.219 1.074 1.024 1.005 1.002 

Cx 0.891 0.864 0.814 0.747 0.624 0.565 

 

Table 2 

K 
6


 

4


 

3


 

2


 

3

2
 

4

3
 

6

5
 

12

11
   

  0.287 0.623 1.088 2.245 3.584 4.282 4.989 5.700 6.412 

a
* 

11.747 5.217 2.974 1.494 1.116 1.054 1.024 1.011 1.005 

Cx 0.933 0.928 0.919 0.891 0.837 0.797 0.748 0.690 0.624 
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