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Abstract: In this paper are presented some results regarding the main aerodynamic 

characteristics and power performances of the coaxial helicopters. Based on the fluid dynamics 

laws which govern the air flow model through the helicopter rotor disc, in this study were made 

two case studies which point out that the induced power ratio relative to the power required to 
operate the two isolated rotors and the coaxial rotors are in favor of the later constructive 

solution . 
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1. INTRODUCTION 

 

The main way to distinguish between different helicopter main rotor systems is 

represented by the blade movement degree of freedom, namely flapping, led-lag and 

feathering. The most common configuration is the single main rotor helicopter which 

consists  of one main rotor, gearbox, tail rotor drivershaft, intermediate gearbox, tail rotor 

and engine (fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 
FIG. 1 

 

 Another variant is the coaxial rotor helicopter which eliminates the need for a tail 

rotor by using counter rotating main rotors. One advantage of the counterrotating rotors is 

that the net size of the rotors is reduced because each rotor provides vertical thrust and all 

power can provide vertical lift and helicopter control [1]. The tow rotors interact with one 

another, producing aerodynamic interferences, which leads to loss of system efficiency. 

Also, this type of helicopter has a very complex mechanical systems, having a great 

number of moving parts (fig. 2).  
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The coaxial rotor systems avoid the effect of lift dissymmetry (lift is proportional to 

the square of the relative air velocity and it is much greater on the rotor blade advancing 

side than on the retreating side) [2]. The yaw control is accomplished by increasing the 

collective pitch of one rotor and decreasing the collective pitch of the other.  

Figure 2 shows a coaxial rotors helicopter and the rotors hub with the mechanical 

links between the swash plates and rotors blades [3]. 

 

  

a) Coaxial rotor b) Rotor mechanisms 

FIG. 2 

 

The flow model for a coaxial helicopter where the lower rotor is considered to operate 

in the fully developed slipstream of the upper rotor is presented in the fig. 3. 

 
 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

a) Rotor control volume b) Lower rotor control volume 

 
FIG. 3 

 

In the figure 3 are represented two rotors with the same disc area. The fluid dynamics 

lows are applied on the whole flow domain [4]. 
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2. INDUCED POWER EVALUATION 

 

Assuming that the rotor planes are sufficiently close together and that each rotor 

provides an equal fraction of the total system thrust the effective induced velocity of the 

hole rotor coaxial system is 
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where A is the disc rotor area,  is air density and T is the rotor thrust. 

The induced power is 
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For the coaxial rotors, which together generate a thrust force equal to 2T, the induced 

velocity has the expression 

 
A

T
v

rotors
coaxial

i
2

2
                 (3) 

The induced power for the coaxial rotors is 
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If the interference induced power factor intk  is considered for the power of the coaxial 

rotors and the independent rotors, then, 
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which is a 41% increase in induced power relative to the power required to operate the 

two isolated rotors. 

The evaluation of 41% percentage was obtained on the basis of momentum theory 

without taking into consideration the space between the two rotors. In fact, one of the 

rotor is placed upper so that the velocity through the lower rotor is two times greater than 

the velocity through the upper disc rotor [5]. The control volume for coaxial rotors is 

presented in the fig. 3. Taking into account that the double velocity in the upper current 

tube is obtained in a section where the area is half of rotor disc area (the two rotors have 

the same disc area), this means that on a half of the lower rotor the air velocity is iliu vv 2  

and on the other half the air velocity is ilv  (fig. 4), where the subscripts u and l  have the 

significance of “upper” and “lower”. 
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The flow model applied to the lower rotor is presented in the fig. 3b. According to the 

momentum equation, the rotor thrust is   
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Taking into account the mathematical expressions of the mass flow rates, by replacing 

it in the above equation, one can get 
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that leads to the equation 
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On the lateral surface of the control volume, the double integral is zero because the 
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 are perpendicular. Also, the unit vector n


 is oriented outward of 

the current tube, that is in front of the second integral in equation (6) appears the sign 

minus, because on this surface and, generally on the any inlet section the air  velocity and 

the unit vector have contrary sign, unlike outlet section, where the air velocity and the 

unit vector have the same sign [6]. 

The work on unit time, namely the power consumed by the rotor for gaining in cinetic 

energy is obtained from the equation, 
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The air velocity in section 4 is w and in section 2 the velocity is zero in the outside of 

the upper rotor current tube and iuv2  on the inner part of this current tube (fig. 3b), that 

leads to the following expression for the power lP , 
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The power lP  is expressed as a product between the thrust force and the air velocity 

through the lower rotor disc [7]. The average velocity is obtained as a medium velocity, 

taking into account that on the inner part of the lower disc the air velocity is iliu vv 2   and 

on the other half part the air velocity is ilv , 
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Therefore, the lower rotor power consumed  has the expression 
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that leads to the following expression for the energy equation, applied to the lower rotor 
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or, taking into account the equation (8), it follows that 
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3. CASE STUDIES 

 

Case 1. The two rotors develop the same thrust force, T 

In this situation, the equation (14) becomes, 
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and this leads to the following expression for the wake velocity w  
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By replacing velocity w and thrust force 22 iuAvT   in equation (8), one can 
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By rearranging the terms and simplifying with A , the above equation is transformed 

in  
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This equation has the following positive solution 
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For both rotors the total power is     iuiliuiuiuiulutot vTvvTvvTTvPPP 5616.22  , 

this means that the induced power factor from interference, intk , is given by 
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which is a 28% increase compared to a 41% when the two rotors have no vertical 

separation. 

Case 2. The two rotors develop the same induced power, P. 

The mathematical expressions of induced powers for the two rotors are the following: 

- The upper rotor, 32 iuu AvP   

- The lower rotor,   uiliul PwvvAP  2

2

1
  

From condition that the two induced power are equal, 32 iulu AvPPP  , it follows 

that 
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On the other hand, from the expression of the lower rotor power,  iliull vvTP   and 

mathematical expression of upper rotor power, iuuu vTP  , it follows also 
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According to the equation (8), the sum of thrusts is 
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By replacing the powers with expression 32 iuAv  and the velocity w from equation (22)  

one can obtain 
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With some few transforms and putting the new variable 
iliu vvt / , the above equation 

becomes, 
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The solution of equation (27) can easily be found in Maplesoft environment (the 

solution is 2853,2t ). This means that  
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When the coaxial rotors operate at equal rotor torques, the induced power factor intk is 

given by 

 219.1
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iu

iu
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with a 22% increase, compared to the case when the two rotors are operated isolated. 

Figure 5b shows the power ratio hoverPP /  for a classical constructive solution (one main 

rotor and tail rotor configuration). 

 

CONCLUSIONS 

 

The results presented in this paper show that, under some approximation and 

assumptions, the application of the fluid dynamics laws permits the analysis of the factors 

that influence the coaxial rotors. The model analyzed  in this study allows a preliminary 

evaluation of the helicopters performances in hover, climb and descent flight. 
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