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Abstract: A mature and comprehensive  battery management system in hybrid electric aircraft 

vehicles is an essential component that performs  many functions, among which the ground 
power, emergency power, improved DC bus stability, and fault detection, diagnosis  and  

isolation are some of them. The selection criterion of the battery type depends on several 

characteristics, such as weight, power density, cost, size, life cycle, battery state-of-charge, and 
maintenance. Related to this, the lithium-ion battery is the best choice for hybrid electrical 

aircraft vehicles due to its higher-capacity and the great capability to hold and distribute large 

power. The upcoming advancement in lithium-ion batteries technologies is lithium-air batteries. 

They have a higher energy density since the  oxygen is a lighter cathode and a freely available 
resource. The lithium-ion battery state-of-charge is an important internal parameter that cannot 

be measured directly, so its estimation remains an essential task for battery management system. 

In this research work we disseminate some of our preliminary results, especially in modeling and 
state and parameter estimation techniques applied also on state-of-charge estimation of the 

rechargeable batteries of different chemistry. More precisely, we investigate the design and the 

effectiveness of two nonlinear state-of-charge estimators implemented in a real-time MATLAB 
environment for a particular lithium-ion battery, such as an adaptive extended  Kalman filter and 

a nonlinear observer. Finally, our target to be reached is to find among these two estimators the 

most suitable one in terms of its estimation accuracy, convergence speed  and robustness. 

 
Keywords: EMC Li-Ion battery model, battery management system, battery state-of-charge, 

adaptive extended Kalman filter, state  estimator observer. 

 

1. INTRODUCTION 

 

One of the main reason to push the aviation industry toward hybrid electric aircraft 

vehicles (HEAVs) is to cut carbon emissions produced by aircrafts. National Geographic 

reported in April 2015 that “airplanes contributed 700 million metric tons of carbon 

dioxide to the air in 2013.The number, if changes do not occur, is set to triple by 2050”, 

as is mentioned in [1]. Thus, the environmental impact is a key issue on the enhancing the 

battery technologies, as is mentioned  also in [1]. The selection criterion of the battery 

type depends on several characteristics, such as weight, power density, cost, size, life 

cycle, battery state-of-charge, and maintenance. Nowadays, the lithium-ion (Li-Ion) 

batteries is the most promising technology and also the best choice for hybrid electric air 

vehicles (HEAVs).  Furthermore, considerable advances in unmanned air vehicle 

(UAV)/drone technology have created a need for small lithium batteries that “can pack 

large amounts of power into very small spaces”, as is mentioned in [2]. Let’s why the 

design engineers are continually seeking “to make UAVs smaller and lighter to benefit 

aerodynamics and range of flight” [2].  
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Typically, large UAVs which utilize gasoline engines are equipped with  lithium 

batteries “to reduce size and weight when powering specific sensor or instrumentation 

platforms or for emergency backup power requirements” [2]. As is stated in [2] the 

lithium metal oxide batteries “deliver a nominal voltage of 4 V, and a discharge capacity 

of 135 to 500 mAh, capable of handling 15A pulses”. They are based on a technology 

consisting of a carbon-based anode, multi-metal oxide cathode, organic electrolyte, and 

use a shut-down separator for enhanced safety, and are capable also to “feature an 

extremely low self-discharge and a wide operating temperature range (-40° to 85°C)”, as 

is mentioned in [2]. Let’s the reason why  an UAV intended for unmanned air 

reconnaissance activities is using lithium metal oxide batteries to “create smaller, lighter 

battery packs for the emergency recovery system, which enables the aircraft to glide to a 

safe landing in case of a catastrophic system failure” [2].  

NASA and Airbus are leading the way in cleaner aviation by designing purely electric 

or HEAVs. Moving toward electric/hybrid electric aircraft vehicles requires creating new 

aircraft designs as well as propulsion systems that integrate battery technologies with 

more efficient engines [1]. NASA is studying the Boeing 737-size hybrid turbo-electric 

powered airliner, “more  efficient aircraft that combines turbine engines with generators 

to distribute power to electrically driven propulsors”, as is mentioned also in [1]. For 

readers information a Li-Ion battery pack that powers the aircraft motors “is comprised of 

2982 cells with a capacity of 2.8 amperes per hour each” [1]. 

All the batteries no matter their chemistry should comply also with the international 

standards specs for “vibration, shock, temperature shock, salt fog, altitude, acceleration, 

spinning, crush, impact, nail penetration, heat, overcharge, and short circuit”, as is 

mentioned also in [2]. The upcoming advancement in Li-Ion batteries technologies is 

lithium-air batteries, that will have a higher energy density due to oxygen being a lighter 

cathode and a freely available resource [1]. A mature and comprehensive  battery 

management system (BMS) in HEAVs is an essential component that performs  many 

functions, such as ground power, emergency power, improved DC bus stability, and fault 

detection, diagnosis  and  isolation are some of them [3]. The Li-Ion battery state-of-

charge (SOC) is one of the most important internal parameter that cannot be measured 

directly, so its accurate estimation is  an important task for BMS to prevent the dangerous 

situations when the battery is over-charged or over-discharged, and to improve 

significantly the battery performance [1]. The battery SOC is an inner state of a battery 

defined in [3-5] as the available capacity of a battery, more precisely as a percentage of its 

rated capacity. The Li-Ion battery SOC  estimation approach in our research paper is 

model based on the values of all the available and measurable Li-Ion battery parameters, 

such as current, battery terminal voltage, and temperature. Thus, we propose two Li-Ion 

battery SOC estimators, namely an adaptive extended Kalman filter [3-5] and an adaptive 

nonlinear observer  estimator (NOE) [6], the both of them implemented in real-time 

MATLAB R2017a simulation environment.   

 

2. LI-ION BATTERY MODEL  SELECTION 

 

The OCV-R-RC-RC-RC electrical circuit model shown in Fig.1, known as the  third 

order 3RC EMC Li-Ion battery model,  is one of the simplest equivalent model circuits 

(EMC) that is selected to approximate the electrical performance of the Li-Ion battery. It 

consists of 3 main parts:  (1) OCV source, (2) internal battery resistance representing the 

ohmic resistance, and (3) three parallel RC polarization cells (Resistors – Capacitors).  
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FIG.1. The 3RC EMC Li-Ion Battery electrical circuit  model in National Instruments Multisiom 14 editor 

 

The Li-Ion battery cell performance deteriorates over time whether the battery is used 

or not, known as "cycle fade", and “calendar fade" respectively. Several disturbances and 

unwanted chemical changes inside the battery, the temperature and pressure effects, 

repeated charging and discharging cycles rates, the battery overcharging and over 

discharging limits,  battery cell aging effects, battery SOC, coulombic efficiency, loss of 

electrolyte, battery internal and insulation resistances, and so on affect considerable the 

Li-Ion battery dynamics in a realistic operating conditions environment. Since, for 

simulation purpose, we investigate a simplified model of the  battery cell dynamics, with 

constant parameters, unaffected in time by the battery SOC and temperature effects, in 

addition we test in the following sections the robustness of the both proposed SOC 

estimators to all  these  factors that change considerable the values of battery model 

parameters during its operation. Furthermore, a specific setup for the proposed third  

order 3RC EMC Li-Ion battery model constant parameters is under investigation to prove 

the effectiveness of both proposed battery SOC estimation strategies, such those  shown 

in [6], Table 5.4, p.100 where the values of the battery parameters are specified at the 

room temperature (i.e. 25°C). Since in “real life”  the dynamics of the battery is seriously 

affected by temperature, an improvement is done by considering a collection of three 3RC 

Li-Ion batteries whose the optimal values of the parameters are extracted for three 

different temperatures (5°C,  15°C  and 20°C)  as is shown in [7], Table 3.1, p.51, that 

can be  updated dynamically based on a thermal model described also in [7]. Moreover, 

the reason to make this EMC battery model selection is to benefit of its simplicity and 

ability to capture accurately the entire dynamics of Li-Ion battery, as well as its easy real-

time implementation with acceptable range of performance [8].  Also, “this choice is due 

to the early popularity of BMS for portable electronics, where the approximation of the 

battery model with the proposed EMC is appropriate”, as is mentioned in [9]. In addition, 

it is worth to mention that  this model is applied today for many other similar energy 

storage applications [9]. However, in this research paper we are more interested in the 

“proof concept” algorithmic considerations as motivated by the requirements imposed by 

the environment and the vehicle [10]. This battery model selection choice gives us  more 

flexibility to prove the effectiveness of the proposed Li-Ion battery SOC estimators in 

terms of SOC estimation accuracy, speed convergence, robustness to different changes in 

battery model parameters (i.e. internal resistance, battery capacity affected by aging 

degradation and repeated charging and discharging cycles) and to current sensor level 

noise, similar as is done in [10].  We are focused also on real time implementation simplicity 

in MATLAB R2017a simulation environment. The electrical circuit model is relatively 

accurate to capture the dynamic circuit characteristics of a battery cell, such as the open-

circuit voltage, terminal voltage, transient response, and self-discharge, as is mentioned also 

in [10]. However, since in “real life” the battery dynamics is seriously affected by the  

temperature efects and changes in battery SOC on the model parameters remains for us an 

interesting open research field  direction to be investigated in the future work.  
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3. LI-ION BATTERY MODEL DYNAMICS IN DISCRETE TIME STATE SPACE 

REPRESENTATION 

 

The discrete time state space model that describes the dynamics of the Li-Ion battery 

is similar introduced as in [6-7, 10-11] as follows 
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where sT  is the samling time, ,st kT k  , 4( , ( ))k x k denotes a nonlinear function of 

SOC, ( ) ( )sx k x kT  is the battery model state vector, ( ) ( )sy k y kT is the battery terminal 

output voltage, ( ) ( )su k u kT  denotes the battery current input, and the polarization time 

constants of the battery RC cells are given by 

1 1 1 2 2 2 3 3 3( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( )T k R k C k T k R k C k T k R k C k   . Also, 4( , ( ))OCV k x k  as a nonlinear function 

on SOC, denotes the open-circuit voltage of the proposed Li-Ion battery.  The model 

parameters are set to the same values used in [6], Table 5.4, p.100, based on the 

assumption that the parameters are time constant and independent on the battery SOC 

changes and temperature effects. In addition, the values of these parameters differ for 

charging and discharging cycles, as well as the coloumbic efficiency, thus the cell’s 

voltage behavior will be described by two sets of parameters, one for charging and one 

for discharging, as is shown in [6-7, 10]. In a realistic environment of operating 

conditions the battery’s parameters are variable with respect to the temperature, the SOC 

and the current direction, making the overall Li-Ion battery one nonlinear model 

nonlinear. As is stated in [4-7, 10], experimental data and curve fitting techniques are 

used to find empirical equations relating the parameters with the operating conditions. 

The Li-Ion battery model can be simplified  as is done in [7-10], the simplifying model  

procedure details can be found in [7], pp.45 – 46, and also used in [10]. For simulation 

purpose, we combine this procedure with the new modeling approach introduced in [7], 

pp. 46-50, based on the internal impedance measurements that dynamically update the 

model based on cell temperature and SOC variations, thus the dynamic battery behavior 

may be more accurately predicted.  

This is possible “since the internal battery impedance is inverse proportional to its 

temperature”, as is mentioned in [7, 10].  Also, “the effects of SOC variation is only taken 

into account to update the OCV parameter” [7].  
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In our  approach all three RC polarization cells parameters are not updated for SOC 

variations since “they are minimally affected at a frequency of interest”  in HEAVs, as is 

stated in [7]. To build the third order 3RC EMC Li-Ion battery model the designer can 

follow the design procedure as is  detailed in [7]. Based on this procedure in [7], p.50 – 

Table 3.1, we can find all the values of the extracted battery model parameters 

corresponding to four different temperatures: 5 , 10 , 15 , 20C C C C    , shown also bellow in 

Table 1. A 3RC EMC combined model is  well developed  in [10] using the same values 

for the coefficients K0, K1, K2, K3, K4  that appear in the Equation (2) and given in [6], 

Table 5.4, p.100. The tuning values of model parameters  0 1 2 3 4( , , , , )K K K K K  are chosen 

to fit the model to the manufacture’s data by using a least squares curve fitting 

identification method OCV = h (SOC), as is shown in [4-5] and mentioned also in [10], 

where the OCV curve is assumed to be the average of the charge and discharge curves 

taken at low currents rates from fully charged to fully discharged battery.  
 

Table 1-The Li-Ion 3RC EMC model parameters ([7]) 

Li-Ion Battery 

Parameter Temperature [ C ] Unit 

 5 10 15 20 mΩ 

R 8 8.1 7.5 7.6  

R1 4.3 4.1 1.9 1.8 mΩ 

R2 5.5 3.5 2.5 1.8 mΩ 

R3 10 7.5 5.1 3.2 mΩ 

C1 0.4 0.4 0.3 0.3 F 

C2 4.3 4.1 4.1 4 F 

C3 49.8 35.3 3.9 35.1 F 

    

3RC EMC Li-Ion battery validation model 

Since we don't have specific driving tests for HEAVs, for the selected third order 3RC 

EMC validation purpose we compare the results of the tests using a particular battery 

integrated in an Advanced Vehicle Simulator (ADVISOR) MATLAB platform, 

developed by US National  Renewable Energy Laboratory (NREL) [12].  The NREL Li-

Ion battery model approximates  with high accuracy  the  Li-Ion battery model 6Ah and 

nominal voltage of 3.6V, manufactured by the company SAFT America,  as is mentioned 

also in [11 - 12]. Moreover, the proposed third order 3RC EMC Li-Ion battery model can 

be easily incorporated in a BMS' HEAVs, and its performance is compared to those 

obtained by a particular HEV that uses a Li-Ion battery pack, tested at different driving 

speed cycles for a large collection of cars provided by the ADVISOR US Environmental 

Protection Agency (EPA) that can be easily extended in HEAVs applications, e.g. an 

Urban Dynamometer Driving Schedule (UDDS), as is shown in Fig. 2 [10].  

 
FIG.2. The UDDS current profile cycle Li-Ion battery  test 

 

The Li-Ion battery OCV as function of  battery SOC full charging cycle (i.e. from 0% 

to 100%  at 1C rate charging cycle)  given in Equation (2)  is represented in Fig.3.  
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It is usually used to describe the dynamics of Li-Ion battery combined models, as 

those developed in [4-6, 10], as well as  to predict more accurately the Li-Ion battery 

terminal voltage.   

 
FIG.3. The Li-Ion battery 3RC EMC OCV as function of corresponding battery SOC full charging cycle 

(i.e. from 0% to 100%  @1C-rate charging cycle  corresponding to -6A battery constant current)  

 

The corresponding curves of Li-Ion battery SOC (3RC EMC model and ADVISOR 

MATLAB platform estimate) and for battery terminal voltage are represented for an 

UDDS driving cycle current profile test in Fig. 4, that validate undoubtedly with a high 

SOC estimation accuracy (top)  the 3RC EMC Li-Ion battery proposed model.  

 
FIG.4. The Li-Ion 3RC EMC battery SOC and ADVISOR SOC estimate for  an UDDS cycle current profile 

test (top) and the corresponding battery terminal voltage (bottom) 

 

4. LI-ION BATTERY SOC ESTIMATORS 

 
In this section we develop two real time SOC estimators for the proposed 3RC EMC Li-

Ion battery model described in state space representation in section 3. The first estimator, 

detailed also in [8],  is an improved  version of an extended Kalman filter (EKF), well 

documented in [4-6] and suggested also in [10],  such that to estimate the Li-Ion battery  SOC 

much accurately.  The second SOC estimator is a nonlinear observer described in detail in [9] 

that is more simple to be implemented in real-time compared to the one described in [13].   

4.1 Adaptive Extended Kalman Filter  Li-Ion battery SOC estimator 

The Coulomb counting method is a widely-used approach for the SOC estimation and its 

real time implementation, as is stated in [4-5]. The main drawbacks of this method is that it 

cannot guess the initial battery SOC value, thus  the SOC estimation error is accumulated 

over time, thus a calibration of Li-Ion battery SOC is needed based on the its OCV 

measurement.  

However,  it is very hard to measure the battery OCV in real time and consequently a 

small OCV error may lead to a significant battery SOC difference, as is stated in [7]. It is the 

main reason that in this research work, a viable alternative to EKF SOC estimator, namely an 

adaptive extended Kalman filter (AEKF) Li-Ion battery SOC estimator is implemented  to 

estimate in real time the Li-Ion battery SOC that can be easily extended to HEAVs 

applications.  
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In addition, the  AEKF SOC real time estimator combines the advantages of the 

Coulomb counting method and the Li-Ion battery OCV calibration SOC estimation 

method. More precisely, the AEKF SOC estimator is an EKF developed in details in [4-5] 

with the performance improved in [8].  In the same way as for EKF the noises and errors 

are taken into consideration in AEKF SOC estimator gain computation to obtain the 

optimal SOC estimation results. Since in a Li-Ion battery pack the parameters are 

extracted once and used in the later estimations, an accumulated modelling error is 

generated. The novelty of the improved version AEKF SOC estimator is the  use of “a  

fading memory factor to increase the adaptiveness for the modelling errors and the 

uncertainty of Li-Ion battery SOC estimation, as well as to give more credibility to the 

measurements”, as is stated in [8]. When process errors and measurement output noises 

are considered, the discrete-time state space equation of the 3RC EMC Li-Ion battery 

dynamic model given in  (1), and (2) can be generalized as:  

  
( 1) ( , ( ), ( )) ( )

( ) ( , ( ), ( )) ( )

x k f k x k u k w k

y k g k x k u k v k

  

 
                                    

          (5) 

 

where 1 2 3( ) ( ) ( ) ( )
T

x k x k x k x k    is a row battery state vector, and the process ( )w k  and 

measurement output ( )v k  are white uncorrelated noises of zero mean and covariance 

matrices ( )Q k and ( )R k respectively [4-5, 8, 10, 13], i.e. 
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The AEKF algorithm procedure  is suggested by [8, 10] and is summarized as follows. 

 Linearization - the 3RC EMC Li-Ion battery nonlinear dynamics is linearized 

around the most recent estimation state value ˆ( | )x k k and ˆ( | 1)x k k  respectively, considered 

as an operating point, and the Jacobian matrices of the linearization are given by 
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                                (7) 

 Initialization - the 3RC EMC Li-Ion battery state vector (0)x   is estimated as a 

Gaussian random vector with mean (0) { (0)}x E x
)

  and state covariance 

matrix
ˆ ˆ ˆ(0) {( (0) (0))( (0) (0)) }TP E x x x x   , i.e.

ˆˆ(0) ( (0), (0))x N x P: .  

 Prediction phase - the predicted value of the state vector is calculated based on 

the previous state estimate and the state matrix covariance affected by a fading memory 

coefficient α 

   2

ˆ ˆ( 1| ) ( ) ( | ) ( ) ( )

ˆ ˆ( 1| ) ( ) ( | ) ( ) ( )T k

x k k A k x k k B k u k

P k k A k P k k A k Q k

  

                                                (8) 

 Kalman estimator gain computation:  

2 2 1ˆ ˆ( ) ( 1| ) ( ) ( ( ) ( 1| ) ( ) ( ))k T k TK k P k k H k H k P k k H k R k       (9) 

 Correction phase - the estimated 3RC EMC Li-Ion battery state can be updated 
any time as long as an output  measurement is available 
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2
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The recursive predictor-corrector structure of AEKF estimator allows the time and 

measurement updates at each iteration. The AEKF SOC estimator has only four  

parameters to be tuned, namely the noise covariance matrices ( )Q k  and ( )R k , the initial 

value of the state covariance matrix ˆ ˆ(0) (0 | 0)P P , and the fading memory factor α. The 

tuning values of the AEKF SOC estimator are obtained by a trial and error procedure 

based on designer’s empirical experience. Furthermore, we simplify the tuning parameters 

procedure such that it doesn’t affect the AEKF algorithm convergence, and thus the 

battery  SOC estimation accuracy, by choosing the noise covariance matrices ( )Q k and 

( )R k as positive definite diagonal matrices [8, 10]. For  simulation purpose, to prove the 

effectiveness of the AEKF estimator in terms of convergence speed, accuracy and 

robustness, we set up  the filter parameters for  the following values 
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         (11) 

 

4.2 Nonlinear observer  SOC estimator 

In this subsection, a nonlinear observer estimator (NOE) of Li-Ion battery SOC is 

under consideration. It is proposed to be an alternative to AEKF SOC estimator as a 

suitable choice of a new Li-Ion battery SOC real time estimator.   To  build and 

implement  the second Li-Ion battery SOC estimator in an attractive real time MATLAB 

R2017a simulation environment we follow the same design procedure as those presented 

in [9]. The battery SOC estimator design idea is suggested by its linear dynamics structure 

described in state space through a matrix compact equation given in (1), where all three 

state variables 1 2 3( ), ( ), ( ) ( )x k x k x k SOC k  change independently. The observer state estimators 

are model based, widely used in state estimation applications to eliminate the state 

estimation error using deviation feedback, as is mentioned in [9]. Theoretically, the  most 

of existing linear and nonlinear observers use  for SOC estimator structure design the 

estimation error between the measured battery terminal DC voltage value and its 

corresponding estimate value that is  multiplied by some calculated observer gains kL  

such that to correct the dynamics of all estimated states, as follows: 
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·
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                                              (12) 

The particular structure of third order 3RC EMC Li-Ion battery model  reveals that the 

output estimation error ye  is mainly caused by an inaccurate SOC estimated value, as is 

stated also in [9]. Subsequently, only the SOC state estimate from fourth differential 

equation (1) will be affected, i.e. the observer gains vector becomes: 
 1 2 3 40, 0, 0, 0k k k kl l l l                                        (13) 
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This “outcome improves significant the  NOE SOC estimation accuracy and simplifies 

the structural complexity of the proposed nonlinear observer estimator”, as is stated in 

[9]. Thus, the dynamics of the NOE estimation errors can be described by the following 

differential equations [9]: 

1 1

2 2

3 3

4

1

2

3

4

( 1) (1 ) ( )

( 1) (1 ) ( )

( 1) (1 ) ( )
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s
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T
e k e k

T

T
e k e k
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T
e k e k

T

e k e k l e k

  

  

  

  

                                    (14) 

 In [9] is proved that all four states estimation errors described by the system of 

equations (14) converge asymptotically to zero in steady-state, and the observer gain for 

the new simplified structure is approximated by an adaptive law: 
(| |)

4 40 40, 0, 0, 0ye
kl l e l


                                           (15) 

that allows the value of 4kl  to change dynamically according to the deviation between 

the measured battery output DC voltage and its corresponding 3RC EMC battery terminal 

output DC estimated voltage. In Equation (15), 40 ,l  and  are tuning parameters 

designed to adjust the adaptive property of the gain 4kl . The adaptation law convergence 

rate (15)  mainly is determined by 40l  at first “inaccurate” stage, and the coefficients 

 and   are used to adjust observer gain 4kl  when the SOC state estimation also reaches 

“accurate” stage, as is stated in [9]. In [9] are stated also three assumptions to tune the 

values of 3RC EMC NOE parameters  40 ,l  and  :  

 40 0l   to ensure the stability of the proposed NOE; 

 The value of 40l  should be big enough to ensure a fast convergence rate;  

 The 40l  should be small enough to avoid SOC estimation “jitter” effect.  

By extensive simulations performed in a real-time MATLAB R2017a simulation 

environment the all three requirements are met if the NOE parameters 40 ,l  and  are 

tuned for the following values: 40 3l   , 0.01    , and 100   .  The simulation results on 

the estimation performance of Li-Ion EMC-NOE are shown in next Section 5.  

 

5. REAL-TIME ESTIMATORS IMPLEMENTATION-MATLAB RESULTS AND 

COMPARISON 

 

In this section we show the simulation results of real time implementation of the both 

proposed Li-Ion battery SOC estimators, namely AEKF and NOE Li-Ion battery SOC 

real time estimators. Also, a comparison of the their performance  in terms of 

convergence speed, SOC estimation accuracy, robustness to changes in initial SOC value, 

changes in measurement sensor noise level, and changes in the battery internal resistance 

and nominal capacity.  

5.1 Real time implementation of the Adaptive Extended Kalman Filter  SOC 

estimator in MATLAB R2017a simulation environment 

In this section we show the simulation results of real time implementation of the both 

proposed Li-Ion battery SOC estimators, namely AEKF and NOE Li-Ion battery SOC 

real time estimators, to a discharging  UDDS current profile test shown at the end of 

Section 5.2 in the last figure, more precisely in Fig.30.  
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Also, a comparison of the their performance is done in terms of convergence speed, 

SOC estimation accuracy, robustness to changes in initial SOC value, changes in 

measurement sensor noise level, and changes in the battery internal resistance and 

nominal capacity. The simulation results of AEKF real time estimator for the proposed  

3RC EMC Li-Ion battery model parameters settings at room temperature during an 

UDDS discharging cycle current profile test are shown in Fig.5 to Fig. 7. The simulation 

results from Fig.5 reveal a very good SOC estimation accuracy between true SOC value 

and AEKF and ADVISOR SOC estimates, and also validate undoubtedly the proposed 

3RC EMC Li-Ion battery model. For  visibility purpose, in Fig.6 is shown almost the 

same information as in Fig.5 but without  the ADVISOR SOC estimate value.   

 
FIG.5. 3RC EMC Li-Ion battery SOC true value versus AEKF and ADVISOR SOC estimates @T=25°C 

 
FIG.6. 3RC EMC Li-Ion battery SOC true value versus AEKF SOC estimate @T=25°C 

 

The simulation results in Fig.7 depicts a very good prediction of AEKF real time 

estimator of Li-Ion battery terminal voltage, and also a very  good voltage estimation 

accuracy.  

 
FIG.7. 3RC EMC Li-Ion battery voltage true value versus AEKF battery voltage  estimate @T=25°C 
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The robustness of the AEKF SOC real time estimator to a change in initial Li-Ion 

battery SOC guess value from 70% to 30% is shown in all previous last three figures. 

Also, it is worth to remark its high convergence speed, such that the AEKF SOC estimate 

reaches the battery SOC true value with small oscillations after almost 100 seconds. The 

AEKF SOC estimator robustness to a decrease  in nominal capacity of the battery by 50% 

due to aging and temperature effects is shown in Fig.8 and Fig. 9. The simulation results 

reveal significant changes for  Li-Ion battery  SOC true and estimation values  during 

entire UDDS discharging cycle current profile test and prediction time for  battery 

terminal voltage, but the estimation accuracy and convergence speed still remain 

unaffected compared to the normal Li-Ion battery operating conditions.   

 
FIG.8. The robustness test of AEKF SOC estimator  to a decrease by 10% of  Li-Ion battery nominal 

capacity due to aging and temperature effects @T=25°C 

 

 
FIG.9. The  robustness test of AEKF battery voltage to a decrease by 10% of  Li-Ion battery nominal 

capacity due to aging and temperature effects @T=25°C 

 

In Fig. 10 and Fig.11 is  shown the robustness of AEKF SOC and battery voltage 

estimator to an increase of four times of internal resistance of the battery due to 

temperature effects. We remark  that AEKF is very accurate, it  has  a high convergence 

speed, and is very robust to these changes.  

 
FIG.10. The robustness test of AEKF SOC estimator  to an  increase by four  times  of  internal Li-Ion 

battery due to  temperature effects @T=25°C 
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FIG.11. The robustness test of AEKF battery voltage  estimator  to an  increase by four  times  of  internal 

Li-Ion battery due to  temperature effects @T=25°C 

 

The robustness of AEKF SOC  estimator to the temperature effects can be tested on 

the collection of fourth 3emc li-ion battery models corresponding to four different 

temperatures with the parameters given in table 1. the simulation results are shown in 

Fig.12 until Fig.19 that will be analyzed in terms of their performance in the next 

section.  

 
FIG.12 3RC EMC Li-Ion battery SOC true value versus AEKF SOC estimate @T=5°C 

 

 

FIG.13. 3RC EMC Li-Ion battery voltage true value versus AEKF battery voltage  estimate @T=5°C 
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FIG.14. 3RC EMC Li-Ion battery SOC true value versus AEKF SOC estimate @T=15°C 

 

 

FIG.15. 3RC EMC Li-Ion battery voltage true value versus AEKF battery voltage  estimate @T=15°C 

 

 
FIG.16. 3RC EMC Li-Ion battery SOC true value versus AEKF SOC estimate @T=20°C 

 
FIG.17. 3RC EMC Li-Ion battery voltage true value versus AEKF battery voltage  estimate @T=20°C 
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Even if significant changes in SOC estimation values and terminal battery voltage 

prediction values take place, from simulation results still we can see the high SOC 

estimation  accuracy and a very good terminal voltage prediction.  

5.2 Real time implementation of the nonlinear observer SOC estimator in 

MATLAB R2017a simulation environment 

The simulation results of Li-Ion battery SOC NOE estimation and battery terminal 

voltage NOE prediction @T=25°C are shown in Fig. 18 to Fig.21. They reveal a good 

convergence speed, a very good SOC estimation accuracy, and a good robustness to 

changes in SOC initial guess, from 70%  to 30%, and to a small decrease by 10% of  the 

battery nominal capacity due to aging and temperature  effects compared to 10% for 

AEKF SOC estimator. The robustness of NOE SOC estimator to the temperature effects 

can be tested in a similar way on the collection of three  3EMC Li-Ion battery models 

corresponding to three different temperatures with the parameters given in Table 1. The 

simulation results are shown in Fig.22 until Fig.27 that will be analyzed in terms of their 

performance in the next section.  

 
FIG.18. 3RC EMC Li-Ion battery SOC true value versus NOE and ADVISOR SOC estimates @T=25°C 

 
FIG.19. 3RC EMC Li-Ion battery voltage true value versus NOE battery voltage  estimate @T=25°C 
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FIG.20. The robustness test of NOE SOC estimator  to a decrease by 10% of  Li-Ion battery nominal 

capacity due to aging and temperature effects @T=25°C 

 

 
FIG.21. The  robustness test of NOE battery voltage estimation  to a decrease by 10% of  Li-Ion battery 

nominal capacity due to aging and temperature effects @T=25°C 

 

 
FIG.22. 3RC EMC Li-Ion battery SOC true value versus NOE SOC estimate @T=5°C 
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FIG.23. 3RC EMC Li-Ion battery voltage true value versus NOE battery voltage  estimate @T=5°C 

 

 

 
FIG.24. 3RC EMC Li-Ion battery SOC true value versus NOE SOC estimate @T=15°C 

 

 
FIG.25. 3RC EMC Li-Ion battery voltage true value versus AEKF battery voltage  estimate @T=15°C 
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FIG.26. 3RC EMC Li-Ion battery SOC true value versus NOE SOC estimate @T=20°C 

 

 
FIG.27. 3RC EMC Li-Ion battery voltage true value versus NOE battery voltage  estimate @T=20°C 

 

In Fig. 28 and Fig.29 is shown the robustness of NOE SOC and battery voltage to an 

increase four times of internal battery resistance.  The simulations results reveal that for 

NOE SOC estimation considerable jitter effects occur compared to AEKF estimator.  

All the simulations take place in a  real time MATLAB R2017a simulation 

environment, for a complete UDDS discharging driving cycle current profile test of 1370 

seconds length shown in Fig.30.  

 
FIG.28. The robustness test of NOE SOC estimator  to an  increase by four  times  of  internal Li-Ion 

battery due to  temperature effects @T=25°C 
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FIG.29. The robustness test of NOE  battery voltage estimator  to an  increase by four  times  of  internal Li-

Ion battery due to  temperature effects @T=25°C 

 

We remark  that NOE SOC and battery voltage estimator  is very accurate, it  has  a 

high convergence speed, and is  very robust to these changes. 
 

 
FIG.30. The  discharging UDDS driving cycle current profile test    . 

 

5.3 Simulation results comparison - performance analysis  

The MATLAB simulation results reveal the superiority of the 3RC EMC Li-Ion 

battery AEKF SOC estimator compared to 3RC EMC Li-Ion Battery NOE SOC estimator 

developed in section 5.1, and section 5.2 respectively. The AEKF SOC estimator 

converge much faster, is robust to all model parameters affected by the SOC and 

temperature, and is very accurately related to SOC estimation. Unlike AEKF SOC 

estimator, NOE SOC estimator introduces jitter effects  in several situations when the 

temperature changes from 25°C  to 5°C, and the internal resistance of the battery 

increases four times. Moreover, by comparing the SOCs true values with their AEKF and 

ADVISOR estimates we validate definitely all these four 3RC EMC Li-Ion battery 

models. Thus, the most suitable SOC estimator for this kind of HEAVs applications is 

AEKF real time estimator, more accurate, robust and easy to be built and implemented in 

real time in MATLAB R2017a  simulation environment.  

 

 

 

 

 



SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE – AFASES2018 
 

279 

 

CONCLUSIONS 

 

In this research paper is proposed a third order 3RC EMC Li-Ion battery model, one 

of the most suitable models from literature of high simplicity and accuracy, easy to be 

implemented in real time and to provide a beneficial support to build two real-time SOC 

estimators, namely an AEKF SOC and a NOE SOC estimators. To have a good insight of 

the realistic battery life environment the proposed 3RC EMC Li-Ion battery model under 

consideration investigates also the case when the battery parameters are time varying and 

dependent on temperature and SOC. This is an  improved battery model useful  to prove 

the robustness of the proposed SOC estimators to the model parameters changes for a 

particular collection of three Li-Ion batteries models extracted at the different 

temperatures, as is shown in Table 1. The robustness is also investigated for changes 

(increase or decrease) in SOC initial values, simultaneous changes in SOC initial values 

and changes in internal resistance of Li-Ion battery due to the effects mentioned in section 

2.1, especially the temperature effects, and simultaneous changes in SOC initial value and 

a decrease in the nominal value of the battery capacity due to aging and  temperature 

effects. By a rigorous performance analysis of MATLAB and SIMULINK simulation 

results for both proposed real time SOC estimators in terms of convergence speed, 

robustness, SOC estimation accuracy, battery terminal voltage prediction and real-time 

implementation simplicity, in our opinion the AEKF SOC estimator is the most suitable 

real-time estimator for this kind of HEVs applications compared to NOE SOC estimator. 

Many other topics remain still open for future investigations, such accurate online SOC 

estimation that needs reliable cell current measurement. In the future work adaptive and 

fuzzy logic SOC estimation strategies for Li-Ion batteries will be investigated and  the 

battery models will be further improved by integrating the eff ect of degradation, 

temperature and SOC effects, as is mentioned also in  [10].  
Nomenclature 

HEAV hybrid electric aircraft vehicle 

UAV unmanned air vehicle 

Li-Ion lithium-ion 

EV electric vehicle 

HEV   hybrid electric vehicle 

BMS   battery management system 

EMC equivalent model circuit 

ADVISOR advanced vehicle simulator 

EPA   environmental protection agency 

UDDS urban dynamometer driving schedule 

OCV open-circuit voltage 

AEKF adaptive extended Kaltman filter 

NOE nonlinear observer estimator  

SOC state of charge 

DOD depth of discharge 

NREL National Renewable Energy Laboratory 
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