ABOUT GENERAL CONFORMAL ALMOST SYMPLECTIC N-LINEAR CONNECTIONS ON K-COTANGENT BUNDLE

Monica PURCARU

Transilvania University of Braşov, Faculty of Mathematics and Informatics, Braşov, Romania (mpurcaru@unitbv.ro)

DOI: 10.19062/1842-9238.2016.14.2.14

Abstract: In the present paper starting from the notions of: almost symplectic structure and conformal almost symplectic structure, we define on k-cotangent bundle the notions of: conformal almost symplectic N-linear connection and general conformal almost symplectic N-linear connection. We determine the set of all general conformal almost symplectic N-linear connections in the case when the nonlinear connection is arbitrary and we find important particular cases.

Keywords: k-cotangent bundle, almost symplectic structure, conformal almost symplectic structure, conformal almost symplectic N-linear connection, general conformal almost symplectic N-linear connection.

1. INTRODUCTION

The notion of Hamilton space was introduced by R. Miron in [6]-[8]. The Hamilton spaces appear as dual via Legendre transformation, of the Lagrange spaces.

The differential geometry of the second order cotangent bundle was introduced and studied by R. Miron in [12], R. Miron, D. Hrimiuc, H. Shimada, V.S. Sabău in [11], Gh. Atanasiu and M. Târnoveanu in [1], etc.

The differential geometry of the k – cotangent bundle was introduced and studied by R. Miron [10], [12].

In the present section we keep the general setting from R. Miron [12], and subsequently we recall only some needed notions. For more details see [12]

Let M be a real n – dimensional C^{∞} – manifold and let $(T^{*k}M, \pi^{*k}, M)$, $(k \ge 2, k \in N)$ be the k – cotangent bundle, where the total space is:

$$T^{*k}M = T^{*k-1}M \times T^*M. (1)$$

Let $(x^i, y^{(1)i}, ..., y^{(k-1)i}, p_i)$, (i = 1, 2, ..., n), be the local coordinates of a point $u = (x, y^{(1)}, ..., y^{(k-1)}, p) \in T^{*k}M$ in a local chart on $T^{*k}M$.

We denote by:

 $\widetilde{T}^{*k}M = T^{*k}M - \{0\}$ where $0: M \to T^{*k}M$ is the null section of the projection π^{*k} . A change of local coordinates on the manifold $T^{*k}M$ is given by:

$$\begin{cases}
\widetilde{x}^{i} = \widetilde{x}^{i} \left(x^{1}, \dots, x^{n}\right), \det\left(\frac{\partial \widetilde{x}^{i}}{\partial x^{j}}\right) \neq 0, \\
\widetilde{y}^{(1)i} = \frac{\partial \widetilde{x}^{i}}{\partial x^{j}} y^{(1)j}, \\
\dots \\
(k-1)\widetilde{y}^{(k-1)i} = \frac{\partial \widetilde{y}^{(k-2)i}}{\partial x^{j}} y^{(1)j} + \dots + (k-1)\frac{\partial \widetilde{y}^{(k-2)i}}{\partial y^{(k-2)j}} y^{(k-1)j}, \\
\widetilde{p}_{i} = \frac{\partial x^{j}}{\partial \widetilde{x}^{i}} p_{j},
\end{cases} (2)$$

We denote with N a nonlinear connection on the manifold $T^{*k}M$, $(k \ge 2, k \in N)$, with the coefficients:

$$\left(\sum_{(1)}^{N-j} {}_{i} \left(x, y^{(1)}, \dots, y^{(k-1)}, p \right), \dots, \sum_{(k-1)}^{N-j} {}_{i} \left(x, y^{(1)}, \dots, y^{(k-1)}, p \right), \dots \right)
N_{ij} \left(x, y^{(1)}, \dots, y^{(k-1)}, p \right) , (i, j = 1, 2, \dots, n).$$
(3)

The tangent space of $T^{*k}M$ in the point $u \in T^{*k}M$ is given by the direct sum of vector spaces:

$$T_{u}(T^{*k}M) = N_{0,u} \oplus N_{1,u} \oplus \dots \oplus N_{k-2,u} \oplus V_{k-1,u} \oplus W_{k,u}, \forall u \in T^{*k}M$$
(4)

A local adapted basis to the direct decomposition (4) is given by:

$$\left\{\frac{\delta}{\delta x^{i}}, \frac{\delta}{\delta y^{(1)i}}, \dots, \frac{\delta}{\delta y^{(k-1)i}}, \frac{\delta}{\delta p_{i}}\right\}, (i = 1, 2, \dots, n),$$
(5)

where:
$$\begin{cases} \frac{\delta}{\delta x^{i}} = \frac{\partial}{\partial x^{i}} - N^{-j} & \frac{\partial}{\partial y^{(1)j}} - \dots - N^{-j} & \frac{\partial}{\partial y^{(k-1)j}} + N_{ij} & \frac{\partial}{\partial p_{j}}, \\ \frac{\delta}{\delta y^{(1)i}} = \frac{\partial}{\partial y^{(1)i}} - N^{-j} & \frac{\partial}{\partial y^{(2)j}} - \dots - N^{-j} & \frac{\partial}{\partial y^{(k-1)j}}, \\ \frac{\delta}{\delta y^{(k-1)i}} = \frac{\partial}{\partial y^{(k-1)i}}, \\ \frac{\delta}{\delta p_{i}} = \frac{\partial}{\partial p_{i}} \end{cases}$$
(6)

and its dual basis $\{\delta x^i, \delta y^{(1)i}, \delta y^{(k-1)i}, \delta p_i\}$ determined by N and by the distribution W_k .

2. CONFORMAL ALMOST SYMPLECTIC STRUCTURE

Let D be an N-linear connection on $T^{*k}M$, with the local coefficients in the adapted basis (5):

$$D\Gamma(N) = \left(H^{i}_{jh}, C^{i}_{(\alpha)}, C^{i}_{jh}, C^{jh}_{i}\right), (\alpha = 1, ..., k-1).$$

$$(7)$$

D determines the h-, w_1- , w_2- ,..., w_{k-1} covariant derivatives in the tensor algebra of d-tensor fields

We consider on $\widetilde{T}^{*k}M$, $(k \ge 2, k \in N)$, an almost symplectic structure A given only by a nonsingular and skewsymmetric d-tensor field a_{ij} , of the type (0, 2):

$$A(x^{i}, y^{(1)i}, ..., y^{(k-1)i}, p_{i}) = \frac{1}{2} a_{ij}(x^{i}, y^{(1)i}, ..., y^{(k-1)i}, p_{i}) dx^{i} \wedge dx^{j} + a_{ij}(x^{i}, y^{(1)i}, ..., y^{(k-1)i}, p_{i}) dy^{(1)i} \wedge dy^{(1)j} + \frac{1}{2} a_{ij}(x^{i}, y^{(1)i}, ..., y^{(k-1)i}, p_{i}) \delta p_{i} \wedge \delta p_{j},$$

$$(i, j = 1, 2, ..., n)$$
(8)

The contravariant tensor field a^{ij} is obtained from the equations: $a_{ii}a^{jk} = \delta^k_i$

Definition 1 An N-linear connection D is called almost symplectic if:

$$a_{|h}^{ij} = 0, a_{ii}^{(\alpha)}|_{h} = 0, a^{ij}|_{h} = 0, (\alpha = 1, ..., k - 1).$$
 (9)

We associate to the lift A the operators of Obata's type given by:

$$\Omega_{hk}^{ij} = \frac{1}{2} (\delta_h^i \delta_k^j - a_{hk} a^{ij}), \Omega_{hk}^{*ij} = \frac{1}{2} (\delta_h^i \delta_k^j + a_{hk} a^{ij}).$$
 (10)

Let $A_2(\widetilde{T}^{*k}M)$ be the set of all skewsymmetric d-tensor fields, of the type (0,2) on $\widetilde{T}^{*k}M$ $k \ge 2, k \in \mathbb{N}$. As is easily shown, the relations for $a_{ij}, b_{ij} \in A_2(\widetilde{T}^{*k}M)$ defined by:

$$(a_{ij} \approx b_{ij}) \Leftrightarrow ((\exists) \lambda(x, y^{(1)}, ..., y^{(k-1)}, p) \in F(\widetilde{T}^{*k}M),$$

$$a_{ij}(x, y^{(1)}, ..., y^{(k-1)}, p) = e^{2\lambda(x, y^{(1)}, ..., y^{(k-1)}, p)} b_{ij}(x, y^{(1)}, ..., y^{(k-1)}, p))$$
(11)

is an equivalence relation on $A_2(\widetilde{T}^{*^k}M)$.

Definition 2 The equivalent class \hat{A} of $A_2(\widetilde{T}^{*k}M)/\approx$ to which A belongs, is called conformal almost symplectic structure on $T^{*k}M$.

Thus:

$$\hat{A} = \{A' \mid a'_{ij}(x, y^{(1)}, ..., y^{(k-1)}, p) = e^{2\lambda(x, y^{(1)}, ..., y^{(k-1)}, p)} a_{ij}(x, y^{(1)}, ..., y^{(k-1)}, p),$$

$$\lambda(x, y^{(1)}, ..., y^{(k-1)}, p) \in F(\widetilde{T}^{*k}M)\}.$$
(12)

3. GENERAL CONFORMAL ALMOST SYMPLECTIC N-LINEAR CONNECTIONS

Definition 3 An N-linear connection, D, with local coefficients: $D\Gamma(N) =$

$$= \left(H^{i}_{jh}, C^{i}_{(\alpha)}, C^{jh}_{i}\right), \ (\alpha = 1, ..., k-1), \text{ is called general conformal almost symplectic}$$
N-linear connection with respect to \hat{A} if:

$$a_{ij|h} = K_{ijh}, a_{ij} \Big|_{h}^{(\alpha)} = \underbrace{Q}_{(\alpha)} \Big|_{ijh}, a_{ij} \Big|_{h}^{h} = \underbrace{\dot{Q}_{ij}}_{h},$$
(13)

where $_{[h}$, $_{h}^{(\alpha)}$ and $_{h}^{(\alpha)}$, denote the h-, $v_{\alpha}-$ and $w_{k}-$ covariant derivatives with respect to D and K_{ijh} , $Q_{(\alpha)}$ $_{ijh}$, \dot{Q}_{ij} $_{h}^{(b)}$ are arbitrary tensor fields on $T^{*k}M$ of the types (0,3), (0,3) and (2,1) respectively, with the properties:

$$K_{ijh} = K_{jih}, Q_{(\alpha)} = Q_{ijh}, \dot{Q}_{ij}^{h} = \dot{Q}_{ji}^{h}, (\alpha = 1, ..., k-1).$$
(14)

Definition 4 An N-linear connection, D, with local coefficients: $D\Gamma(N) =$

$$= \left(H^{i}{}_{jh}, \underset{(\alpha)}{C^{i}}{}_{jh}, C^{i}{}_{i}{}^{jh}\right), \quad (\alpha = 1, \dots, k-1), \quad \text{for wh cih} \quad \text{there ex sits the 1-form } \omega, \\ \omega = \omega_{i} dx^{i} + \underset{(1)}{\dot{\omega}_{i}} \delta y^{(1)i} + \dots + \underset{(k-1)}{\dot{\omega}_{i}} \delta y^{(k-1)i} + \overset{.}{\dot{\omega}^{i}} \delta p_{i}, \quad \text{such that:}$$

$$\begin{cases}
 a_{ij|h} = 2\omega_h g_{ij}, & a_{ij} \mid_{h} = \dot{\omega}_h a_{ij}, \\
 a_{ij} \mid_{h} = 2\ddot{\omega}^h a_{ij},
\end{cases}$$
(15)

where $_{|h}$, $_{|h}^{(\alpha)}$ and $_{|h}^{h}$, denote the h-, $v_{\alpha}-$ and $w_{k}-$ covariant derivatives with respect to D, $(\alpha=1,...,k-1)$ is called conformal almost symplectic N-linear connection, with respect to the conformal almost symplectic d-structure \hat{A} , corresponding to the 1-form ω and it is denoted by: $D\Gamma(N,\omega)$.

We shall determine the set of all general conformal almost symplectic N-linear connections, with respect to \hat{A} .

Let
$$D\Gamma(N) = \begin{pmatrix} 0 & 0 & 0 \\ H^i{}_{jh}, C^i{}_{(\alpha)} & jh \end{pmatrix}$$
 $(\alpha = 1,...,k-1)$ be the local coefficients of a fixed N - linear connection D , where $(N^j{}_i(x,y^{(1)},...,y^{(k-1)},p),N_{ij}(x,y^{(1)},...,y^{(k-1)},p))$, $(\alpha = 1,...,k-1), (i,j=1,2,...,n)$ are the local coefficients of the nonlinear connection N .

Then any N-linear connection, D, with the local coefficients $D\Gamma(N) = \left(H^{i}{}_{jh}, C^{i}{}_{(\alpha)}{}_{jh}, C^{jh}{}_{i}\right), (\alpha = 1, ..., k-1)$, can be expressed in the form [13]:

$$\begin{cases}
\overline{H}_{sj}^{i} = H_{sj}^{i} - B_{sj}^{i}, \\
\overline{C}_{sj}^{i} = C_{(\alpha)}^{i} {}_{sj} - D_{(\alpha)}^{i} {}_{sj}, (\alpha = 1, ..., k-1), (k \ge 2, k \in N), \\
\overline{C}_{s}^{ij} = C_{s}^{ij} - D_{s}^{ij}.
\end{cases}$$
(16)

Using the relations (13), (16) and the Theorem 1 given by R.Miron in ([5]) for the case of Finsler connections we obtain:

Theorem 2 Let $\overset{\circ}{D}$ be a given N -linear connection, with local coefficients $\overset{\circ}{D}\Gamma(N)$ = $\begin{pmatrix} 0 & 0 & 0 \\ H^i{}_{jh}, \overset{\circ}{C}^i{}_{jh}, \overset{\circ}{C}^i{}_{i} \end{pmatrix}$ ($\alpha = 1, ..., k-1$). The set of all general conformal almost symplectic

N-linear connections, with respect to \hat{A} , corresponding to the same nonlinear connection N, with local coefficients $D\Gamma(N) = \left(H^i{}_{jh}, C^i{}_{(\alpha)}{}_{jh}, C^j{}_{i}\right), (\alpha = 1, ..., k-1)$ is given by:

$$\begin{cases}
H_{jh}^{i} = H_{jh}^{i} + \frac{1}{2} a^{im} (a_{mj}^{0} + K_{mjh}^{mj}) + \Omega_{sj}^{ir} X_{rh}^{s}, \\
C_{(\alpha)}^{i} = C_{(\alpha)}^{i} + \frac{1}{2} a^{im} (a_{mj}^{0} + K_{mjh}^{0}) + \Omega_{sj}^{ir} Y_{sj}^{s} (\alpha) \\
C_{i}^{jh} = C_{i}^{jh} + \frac{1}{2} a^{mj} (a_{mj}^{0} + \hat{Q}_{mi}^{0}) + \Omega_{si}^{jr} Z_{r}^{sh},
\end{cases} (17)$$

Where $\begin{pmatrix} \alpha \\ ih \end{pmatrix}$, $\begin{pmatrix} \alpha \\ ih \end{pmatrix}$, and $\begin{pmatrix} \alpha \\ ih \end{pmatrix}$ denote the $h-, v_{\alpha}-$ and $w_{k}-$ covariant derivatives with respect to $\begin{pmatrix} \alpha \\ ih \end{pmatrix}$, $\begin{pmatrix} \alpha \\ ih \end{pmatrix}$, $\begin{pmatrix} \gamma \\ ih \end{pmatrix}$,

Particular cases:

1. If we take $K_{ijh} = 2\omega_h a_{ij}$, $Q_{ijh} = 2\dot{\omega}_h a_{ij}$, $(\alpha = 1,...,k-1)$, $\dot{Q}_{ij}^{h} = 2\ddot{\omega}^h a_{ij}$ in Theorem 2, we obtain:

Theorem 3 Let $\overset{0}{D}$ be a given N -linear connection, with local coefficients $\overset{0}{D}\Gamma(N) = = \begin{pmatrix} 0 & 0 & 0 \\ H^{i}{}_{jh}, \overset{0}{C}_{(\alpha)}^{i}{}_{jh}, \overset{0}{C}_{i}^{jh} \end{pmatrix} (\alpha = 1,...,k-1).$

The set of all conformal almost symplectic N-linear connections with respect to \hat{A} , corresponding to the 1-form ω , with local coefficients $D\Gamma(N,\omega) = \left(H^{i}_{jh}, C^{i}_{(\alpha)}_{jh}, C^{j}_{i}\right), (\alpha = 1,...,k-1)$ is given by:

$$\begin{cases}
H_{jh}^{i} = H_{jh}^{0} + \frac{1}{2} a^{im} (a_{mj}^{0} - 2\omega_{h} a_{mj}) + \Omega_{sj}^{ir} X_{rh}^{s}, \\
C_{(\alpha)}^{i} = C_{(\alpha)}^{0} + \frac{1}{2} a^{im} (a_{mj}^{0} - 2\dot{\omega}_{h}^{i} a_{mj}) + \Omega_{sj}^{ir} Y_{(\alpha)}^{s} + \Omega_{sj}^{r} Y_{(\alpha)}^{s} + \Omega_{sj}^{r}$$

where $\begin{pmatrix} \alpha \\ ih \end{pmatrix}$, $\begin{pmatrix} \alpha \\ ih \end{pmatrix}$, and $\begin{pmatrix} \alpha \\ ih \end{pmatrix}$ denote the $h-, v_{\alpha}-$ and $w_{k}-$ covariant derivatives with respect to $\begin{pmatrix} \alpha \\ ih \end{pmatrix}$, $\begin{pmatrix} \alpha \\ ih \end{pmatrix}$,

2. If $X_{jh}^i = Y_{(\alpha)}^i$ $^{jh} = Z_i^{jh} = 0$, in Theorem 2 we have:

Theorem 4 Let $\overset{\circ}{D}$ be a given N -linear connection, with local coefficients $\overset{\circ}{D}\Gamma(N)$ = $\begin{pmatrix} \overset{\circ}{H^i}_{jh}, \overset{\circ}{C^i}_{(\alpha)}, \overset{\circ}{h}, \overset{\circ}{C^i}_{i} \end{pmatrix}$ ($\alpha = 1, ..., k-1$). Then the following N-linear conection K, with local coefficients $K\Gamma(N) = \begin{pmatrix} H^i_{jh}, \overset{\circ}{C^i}_{(\alpha)}, \overset{\circ}{C^i}_{i} \end{pmatrix}$, ($\alpha = 1, ..., k-1$), given by (19) is general conformal almost symplectic with respect to \hat{A} :

$$\begin{cases}
H^{i}_{jh} = H^{i}_{jh} + \frac{1}{2} a^{im} (a_{mj} - K_{mjh}), \\
C^{i}_{(\alpha)}_{jh} = C^{i}_{(\alpha)}_{jh} + \frac{1}{2} a^{im} (a_{mj} - Q_{mjh}), (\alpha = 1, ..., k - 1), \\
C^{i}_{(\alpha)}_{jh} = C^{i}_{(\alpha)}_{jh} + \frac{1}{2} a^{mj} (a_{mi} - Q_{mi}), (\alpha = 1, ..., k - 1),
\end{cases}$$

$$C^{i}_{i} = C^{jh}_{i} + \frac{1}{2} a^{mj} (a_{mi} - Q_{mi}), (\alpha = 1, ..., k - 1),$$

$$(19)$$

where $\binom{\alpha}{b}$, $\binom{\alpha}{b}$, and $\binom{\alpha}{b}$ denote the h-, $v_{\alpha}-$ and $w_{k}-$ covariant derivatives with respect to $\stackrel{0}{D}$, and K_{ijh} , $\stackrel{Q}{Q}_{ijh}$, \dot{Q}_{ij} are arbitrary d-tensor fields of the types (0,3), (0,3) and (2,1) respectively, with the properties: $K_{ijh} = K_{jih}$, $\stackrel{Q}{Q}_{(\alpha)}$ $ijh = \stackrel{Q}{Q}_{jih}$, \dot{Q}_{ij} $h = \dot{Q}_{ji}$ $h = \dot{Q}_{ji}$

3. If we take a general conformal almost symplectic N-linear connection with respect to \hat{A} as \hat{D} , in Theorem 2 we have:

Theorem 5 Let $\overset{0}{D}$ be on $T^{*k}M$ a fixed general conformal almost symplectic N-linear connection with respect to $\overset{0}{A}$, with the local coefficients $\overset{0}{D}\Gamma(N) = \begin{pmatrix} 0 & 0 & 0 \\ H^{i} & jh, \overset{0}{C}^{i} & jh \end{pmatrix}, \overset{0}{C}^{i} & jh \end{pmatrix}$ ($\alpha = 1, ..., k-1$). The set of all general conformal almost symplectic N-linear connections, with respect to $\overset{0}{A}$, with local coefficients $D\Gamma(N) = \begin{pmatrix} H^{i} & jh, & C^{i} & jh \end{pmatrix}, \overset{jh}{C}^{i} & jh, & C^{i} & jh \end{pmatrix}, (\alpha = 1, ..., k-1)$ is given by:

$$\begin{cases} H^{i}_{jh} = H^{i}_{jh} + \Omega^{ir}_{sj} X^{s}_{rh}, \\ C^{i}_{(\alpha)}_{jh} = C^{i}_{(\alpha)}_{(\alpha)}_{jh} + \Omega^{ir}_{sj} Y^{s}_{(\alpha)}_{rh}, (\alpha = 1, ..., k-1), \\ C^{i}_{(\alpha)}_{jh} = C^{i}_{i}_{jh} + \Omega^{jr}_{si} Z^{sh}_{r}, \end{cases}$$
(20)

where $X_{jh}^{i}, Y_{(\alpha)}^{i}, Z_{i}^{jh}$ are arbitrary d-tensor fields, $(\alpha = 1, ..., k-1)$.

4. If $K_{ijh} = Q_{ijh} = \dot{Q}_{ijh} = 0$, $(\alpha = 1,...,k-1)$ in Theorem 2 we obtain the set of all almost symplectic N-linear connection in the case when the nonlinear connection is fixed:

Theorem 6 Let $\stackrel{\circ}{D}$ be a given N -linear connection, with local coefficients $\stackrel{\circ}{D}\Gamma(N) = \begin{pmatrix} 0 & 0 & 0 \\ H^i{}_{jh}, C^i{}_{(\alpha)}{}_{jh}, C^i{}_{i} \end{pmatrix}$ $(\alpha = 1,...,k-1)$. The set of all almost symplectic N-linear connections, with respect to \hat{A} , corresponding to the same nonlinear connection N, with local coefficients $D\Gamma(N) = \left(H^i{}_{jh}, C^i{}_{(\alpha)}{}_{jh}, C^j{}_{i}\right), (\alpha = 1,...,k-1)$ is given by:

$$\begin{cases}
H_{jh}^{i} = H_{jh}^{i} + \frac{1}{2} a^{im} a_{mj}^{0} + \Omega_{sj}^{ir} X_{rh}^{s}, \\
C_{(\alpha)}^{i} = C_{(\alpha)}^{i} + \frac{1}{2} a^{im} a_{mj}^{0} + \Omega_{sj}^{ir} Y_{(\alpha)}^{s} \\
C_{i}^{jh} = C_{i}^{jh} + \frac{1}{2} a^{mj} a_{mj}^{0} + \Omega_{si}^{jr} Z_{r}^{sh},
\end{cases} (21)$$

where $\binom{\alpha}{0}_{h}$, $\binom{\alpha}{0}_{h}$, and $\binom{0}{h}_{h}$ denote the h-, $v_{\alpha}-$ and $w_{k}-$ covariant derivatives with respect to D, X_{jh}^{i} , $X_{(\alpha)}^{i}$, X_{jh}^{i} , X_{i}^{jh} are arbitrary d-tensor fields.

About General Conformal Almost Symplectic N-Linear Connections on K-Cotangent Bundle

Theorem 7 The mappings $D\Gamma(N) \to \overline{D}\Gamma(N)$ determined by (20), together with the composition of these mappings is an abelian group.

REFERENCES

- [1] Gh. Atanasiu and M. Târnoveanu, New Aspects in the Differential Geometry of the second order Cotangent Bundle, Univ. de Vest din Timişoara, No.90, 1-65, 2005;
- [2] Gh. Atanasiu, *The invariant expression of Hamilton geometry*, Tensor N.S., Japonia, vol. 47, 23-32, 1988;
- [3] M. Matsumoto, *The Theory of Finsler Connections, Publ. of the Study Group of Geometry 5*, Depart. Math. Okayama Univ., XV, + 220 pp, 1970;
- [4] M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Otsu, 1986.
- [5] R. Miron and M. Hashiguchi, *Conformal Finsler Connections*, Rev. Roumaine Math.Pures Appl., 26, pp.861-878, 1981;
- [6] R. Miron, Hamilton Geometry, Seminarul de Mecanică, Univ. Timișoara, 3, 1987;
- [7] R. Miron, Sur la geometrie des espaces Hamilton, C.R. Acad., Sci. Paris, Ser II, 306, no.4, 195-198, 1988;
- [8] R. Miron, Hamilton Geometry, Analele St. Univ. Iasi, S-I Mat. 35, 35-85, 1989;
- [9] R. Miron, S. Ianuş and M. Anastasiei, *The Geometry of the dual of a Vector Bundle*, Publ. de l'Inst. Math., 46 (60), 145-162, 1989;
- [10] R. Miron, *Hamilton spaces of order k greater than or equal to 1*, Int. Journal of Theoretical Phys., 39, 9, 2327-2336, 2000;
- [11] R. Miron, D. Hrimiuc, H. Shimada and V.S. Sabău, *The geometry of Lagrange Spaces*, Kluwer Academic Publisher, FTPH, 118, 2001;
- [5] R. Miron, *The Geometry of Higher-Order Hamilton Spaces*. Applications to Hamiltonian Mechanics, Kluwer Acad. Publ., FTPH, 2003;
- [13] M. Purcaru and M. Târnoveanu, On Transformations Groups of N-Linear Connections on Second Order Cotangent Bundle, Acta Universitatis Apulensis, Special Issue, pp.287-296, 2009.