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Abstract: This paper opens a new research exploration direction in a real time 

MATLAB/SIMULINK simulation environment to optimize the pH neutralization process level of  a 
generic  wastewater treatment plant following a stochastic approach. The control system design 

of  pH neutralization process is a very difficult task to be accomplished due to its severe 

nonlinearity and complexity characterized by a persistent change in the chemical systems with 
complex kinetic and thermodynamic reactions, nonlinear responses, a sensitive environment 

uncertain results and large variety of operating conditions to be covered. Furthermore, the 

standard control strategies design fail unfortunately when the system performance is concerned. 

In the new approach the  proposed control strategy  proved its effectiveness and high accuracy in 
terms of its performance compare to the traditional control mechanisms. To validate all these 

results a simplified intuitive nonlinear model of the neutralization reactor from the literature is 

considered. The solution of the optimization problem is found  in a Linear Quadratic Gaussian 
optimization framework. In this new approach the nonlinear dynamics of the neutralization 

reactor must be linearized around an equilibrium point, the cost function is quadratic, and the 

process and measurement noises are white  Gaussian noises, independent,  of zero mean,  and 

normally distributed. The system’s control is Markovian and  linear as a combination of 
observable or estimated states.  In addition the implementation of stochastic optimal control 

approach is more restrictive by introducing a few key concepts and requirements such as 

controllability, stabilizability, observability, and the certainty-equivalence principle, as well as 
the well-known separation principle  between optimal estimation and optimal control.  

 

Keywords: LQG stochastic control, control system optimization, Linear Quadratic regulator, 
Linear quadratic estimator,  neutralization reactor, MATLAB/SIMULINK 

 

1. INTRODUCTION 

 

The acidity of any solution is assessed by measuring its pH level (e.g. the 

concentration of positive Hydrogen ions ( H ) in the solution) that ranges in a scale from 

1 to 14. The value of  7 for the pH level in any solution at room temperature indicates that the 

solution is neutral. According to this scale if the pH of the solution at the room temperature is 

less than 7, the concentration  of Hydrogen ions ( H ) in the solution is high, and the solution 

is considered to be acid [1]. On the other hand if the pH level of the solution at room 

temperature is greater than 7, the concentration of negative hydroxyl ions ( OH ) in the 

solution is high and the solution is considered to be alkaline or a base [1].   According to 

environmental safety standards for industry all treated water effluents must have the pH level 

of either 8 or  6 [1]. The control system design of  pH neutralization process is a very difficult 

task to be accomplished due to the following reasons [1, 2, 3]:  

1) the dynamics of pH neutralization process is severely nonlinear  and of high 

complexity as is shown in Fig. 1(a, b) for a particular case of the titration curve  for acid-base 

process reaction [1].  
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2) a persistent changes in the chemical systems  

3) complex kinetic and thermodynamic reactions 

4) nonlinear response of the process, 

5) a sensitive environment uncertain results  

6) a large variety of operating conditions to be covered. 

 

      
FIG. 1.  Titration curve for acid-base process reaction (a snapshot from [1], p.36) 

(a) Hydrochloric acid 

(b) Phosphoric acid 

 

The classical control strategies design fail in the majority of the cases when the system 

performance is concerned. In the new stochastic  approach the  proposed optimal control 

strategy  proved its effectiveness and high accuracy in terms of its performance compare to 

the traditional control mechanisms. To find an optimal solution to this  optimization problem 

a Linear Quadratic Gaussian (LQG)  control strategy is proposed. To implement the new 

LQG strategy the following requirements need to be satisfied [4, 5, 6, 7, 8]: 

(1) the nonlinear dynamics of the neutralization reactor must be linearized around an 

equilibrium point  

(2) the cost function is quadratic 

(3) the process and measurement noises are white  Gaussian, independent,  of zero mean,  

and normally distributed  

(4) the system’s control is Markovian and  linear as a combination of observable or 

estimated states.  

The optimization problem consists of two distinct parts, that can be easily implemented in 

MATLAB/SIMULINK  framework [4, 5, 6, 7]:  

(a) Linear Quadratic Regulation (LQR) problem  

(b) Linear Quadratic Estimation (LQE) problem  

Combining the solutions of  the both LQR and LQE problems is a practical real time 

implementation tool of the LQG control strategy in  a feedback closed-loop control system to 

find the optimal values of the pH level for a neutralization reactor based on a nonlinear 

intuitive generic model [4, 5, 6, 7, 8].  

 

2. THE NEUTRALIZATION REACTOR DESCRIPTION 

 

In Figure 2 is shown the layout of a simple neutralization reactor used in the chemical 

industry, where an alkaline input flow (fluent) is neutralized with acid (reagent) in a 

continuously stirred tank reactor (CSTR) [2]. For this case study the waste water enters the 

reactor with a federate of ][2000
h

l
V

dt

dV
F

F    at a 13FpH (strongly alkaline); the input 

acid A
A V

dt

dV   and  base B
B V

dt

dV   flows are dosed and controlled by a PI regulator.  
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A pH-probe measures pH-actual value of the neutralized solution inside the reactor 

during the transient and steady state neutralization process, transmitting its feedback to 

the controller with a lag time of 50 seconds.  The reactor volume is assumed to be 

constant, with a capacity of  ],[4000 l and the maximum value of the HCl-acid flow with a 

25% concentration is ].[30
h

l
 The pH target value is 10 and to simplify the dynamic model 

only acid addition is considered, due to the fact that the waste water is already alkaline.  

 
 

FIG.2. Neutralization CSTR reactor (a snapshot from [2], p.2 ) 

 

3.  FORMULATION OF THE CONTROL OPTIMIZATION PROBLEM 

  

The control optimization problem is formulated based on the well-known optimality 

principle [4, 5, 6, 7].   According to this principle the optimization problem consists in a 

sequence of consecutive stages such that  “from any point on an optimal trajectory, the 

remaining trajectory is optimal for the corresponding problem initiated at that point” [4].  

The optimality principle is a key concept for defining a control optimization problem 

(COP) by the following elements given in [4]: 

1. …..”The dynamics of the plant represented in continuous and discrete state-

equation (law motion): 

),,(1 tuxfx ttt                                                                                                                   (1) 

where ,...2,1,0t is the discrete-time that takes integer values,  n

tx  is the value of the 

control system state vector at time t , calculable from known quantities and obeys a law 

motion (1),  m

tu  is the control system input vector value at time t , that is chosen on 

basis of knowing the set of previous controls up to time 1t , },...,,{ 0211 uuuU ttt   .  

2. The cost function to be optimized: 

)(),,(
1

0

ss

s

t

tt xCtuxcC 




                                                                                                  (2) 

by a suitable choice of the set of controls },...,,{ 0211 uuuU sss     

3. An optimal control law attached to the law motion (1)  and the cost function (2),  

known  as the optimality equation (dynamic programming equation (DP) or equivalent 

Bellman equation)  to find the optimal value of the control (optimal actuator effort of the 

control system): 
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  )]1,,,(),,([inf),(  ttuxfFtuxctxF tttt
u

t
t

, for st                                                      (3) 

with the  terminal condition: )(),( sst xCsxF   

where the future cost function defined in (2) from  time t onwards is defined as: 

 )(),,(
1

ss

s

t

t xCuxcC 




                                                                                                (4) 

with the minimal  value calculated as solution of an optimization problem over the 

sequence of controls },...,,{ 21 tss uuu  : 

][inf),(
},...,,{ 21

t
uuu

t CtxF
tss 

                                                                                                      (5) 

Furthermore, the DP equation  (3) defines an optimal control problem that is related 

also to a feedback or closed – loop control, defined as: 

),( txku tt   ,                                                                                                                      (6) 

so function only of tx  and t , in contrast to open-loop control system where the sequence 

of controls },...,,{ 021 uuuU sss  must be calculated all once at time 0t ….”[4]. 

 Closing, the DP equation expresses the optimal control solution in close form as in 

(6) and is also a recursive backward equation in time that gives the optimal control 

solution 021 ,...,, uuu ss  , recursively at the time moments 0,....2,1  ss , governed by a 

simple rule that the latter control policy is decided first [4]. Let now to consider the 

stochastic evolution of the neutralization reactor plant by introducing  two sequences 

},,...,,{ 01 xxxX ttt  and },...,,{ 01 uuuU ttt   that incorporate the history of evolution at  

time t  of plant states and controls, x  and  u respectively. The evolution of the pH level of 

neutralization process  is described by a state vector denoted by a variable x  that takes 

the value tx  at time t  that satisfies  the following requirements given in[4]: 

1. “…The state vector incorporates a Markov dynamics, i.e. the stochastic version of 

the dynamics equation of the plant, given by: 

),|(),|( 11 tttttt uxxPUXxP                                                                                 (7) 

2. The COP cost function is decomposable with respect to tt UX , , as is shown in (2).  

3. The current values of all state vector components tx  are observable, i.e. tx is 

known at the time at which the control tu  must be chosen….”  

 Let us now to designate the observed  history of the plant evolution  at time t  by 

),( 1 ttt UXW ,                                                                                                                  (8) 

that is  related to the cost function C given in (2) at time s [4]: 

)( sWCC                                                                                                                           (9) 

 Also, the minimal expected cost function from time t  onwards is defined as in 

[4]:  

]|[inf)( ttt WCEWF 


                                                                                                     (10) 

where ][.E  is the stochastic expectance operator (stochastic average) of the conditional 

cost tC  with respect to tW , and    is a control policy, i.e. a rule to chose the plant control 

sequence  01,...,uus . 
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Based on this preparatory elements can be formulated the following remarkable result 

from the control optimality (see Theorem 1.3 in [4], p. 4):  

 “…The minimal expected cost )( tWF  is a function of tx  and t  alone, let say 

),()( txFWF tt  , that obeys the optimality  DP equation (3): 

  ]},|1,[),,({inf),( 1 itttt
u

t uxtxFEtuxctxF
t

   for  st                                              (11) 

with the terminal condition  

)(),( sss xCsxF                                                                                                               (12) 

 Moreover, the minimizing value of the control ),( txku tt   in (11) is optimal….”.  

 The stochastic approach from this section is useful in the next section to develop a 

particular case of linear quadratic Gaussian optimization problem.  

 

4. THE LINEAR QUADTRATIC REGULATION OPTIMIZATION 

PROBLEM 

 

 In this section the Linear Quadratic Regulation (LQR) optimization problem  will be 

defined, and in the next section  LQR will be implemented in a MATLAB/SIMULINK 

simulation environment to control the pH level of feedback closed-loop control system  

CSTR chosen as case study. 

Using the preliminary theoretical results from previous section the LQR optimization 

problem will be defined based on the following elements [4]: 

(a) The process dynamics linearized in a state-space representation, including the 

process and measurement noise: 

tttt

tttt

vDuCxy

wBuAxx



1
                                                                                                        (13) 

with  tt vw ,  the process ( tw ) and measurement ( tv ) white Gaussian noises (i.e., with  

normal distribution functions) at time t  are  independent, of zero mean, and with  the 

covariance matrices  wQ , and vR  respectively : 

E[ tw ] = 0, E[ tv ] = 0, w

T

tt QwwE ][ ,  v

T

tt RvvE ][ , 0][ T

stwwE , 0][ T

stvvE , for ts       

                                                                                                                                         (14) 

and, also  

0][ T

ttvwE ,                                                                                                                     (15) 

For independent stochastic noise variables, A, B, C, D  are matrices of dimensions 

,,, npmnnn  and mp respectively. The variable p

ty  from equations (13) 

represents the measurable plant output.  

(b) No all of the n
th 

– components of the state vector  n

tx  are observable 

(measurable) at a given time t  

(c) A quadratic optimization criterion given by: 

)(),,(
1

0

ss

s

t

tt xJtuxcJ 




                                                                                                (16) 

with one step ahead and a terminal costs [4]: 

SPP
u

x

PP

PP

u

x
uPuuPxxPuxPxuxc uxxu

uuux

T

xuxx

T

uu

TT

xu

T

ux

T

xx

T 























 ,),(               (17) 

T

ss xxxJ )(   (terminal quadratic cost) , nn

s

                                                     (18)  
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The quadratic forms xxP , S , uuP  in (17) have  appropriate dimensions and are non-

negative definite (i.e., ,0xPx xx

T )0,0  uSxSxu TTT . In addition, the matrix  uuP is 

assumed to be positive definite (i.e., uPu uu

T >0), and  the matrices  xxP , uuP , s must  be 

symmetric [4].  

This model is suitable for control system regulation for which the state trajectory  x is 

controlled by u  such that to end in the point (0, 0) (i.e., steering to a critical value) [4].  

Also, the closed form of optimal solution of the COP defined  in (13)-(18) is given for 

free noise  but can be adapted to the noise disturbances included in the dynamic model of 

the plant  as is  [4], p. 25. 

 

5. KALMAN FILTER – CERTAINTY EQUIVALENCE AND SEPARATION 

PRINCIPLES 

 

In this section is introduced the famous Kalman Filtering concept concerning the 

stochastic state estimation, and also two of the most used principles  in a stochastic 

control system optimization will be related to the this concept:  

(a) the certainty equivalence principle  

(b) the separation principle 

The Kalman Filter is a powerful and popular tool for the stochastic state estimation 

that was proposed by R.E. Kalman in 1960.  It can be viewed as an important moment in 

the evolution of control system theory related to that time.   

The full Linear Quadratic Gaussian (LQG) model is based on four main assumptions 

[4]: 

(1) The dynamics of the process is linearized (i.e., represented by stochastic 

differential equations given in (13)) 

tttt

tttt

vDuCxy

wBuAxx



1
                                                                                                        (19)                                    

(2) The cost function is quadratic:  

uPuSxuxPxuxc uu

TT

xx

T  2),(
                                                                                    (20) 

(3) The process and measurement noises are Gaussian (normal distributions, 

),0(),,0( vtwt RNvQNw  ) with  tt vw ,  the process ( tw ) and measurement ( tv ) white 

Gaussian noises (i.e., with  normal distribution functions) at time t , of zero mean, 

independent (uncorrelated), and the covariance matrices  wQ , and vR  respectively : 

E[ tw ] = 0, E[ tv ] = 0, w

T

tt QwwE ][ ,  v

T

tt RvvE ][ , 0][ T

stwwE , 0][ T

stvvE , for ts   , 

and 0][ T

ttvwE ,  since stochastic noise variables are independent 

(4) No all the components of the state vector of the control process are observable 

(measurable). 

A remarkable result related to the Gaussian random variables is provided by 

Lemma11.1 together  with its proof  in [4], p. 41.  

 This Lemma makes the link between Gaussian nature of the random variables and the 

stochastic state estimation, well-known in the literature as “linear least squares 

estimates”. According to this Lemma “if x and y are two Gaussian random variables 

jointly normal distributed with zero mean and the covariance matrix: 









































yyyx

xyxx

VV

VV

y

x
yx

y

x
E cov])[(                                                                           (21) 
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then the distribution of x conditional on y is also Gaussian, with: 

yVVyxE yyxx

1)|(      (conditional mean), and                                                                  (22) 

yxyyxyxx VVVVyx 1)|cov(    (conditional covariance)                                                      (23)     

The  linear least square estimate of  x in terms of y (also, known for Gaussian case as 

the maximum likelihood estimator) is defined as [4]: 

yPPHyx yyxy

1ˆˆˆ  , with 1ˆˆ  yyxyPPH    ….”                                                            

Remark:     Even without the assumption that x and y are jointly normal distributed, 

this linear function of y has a smaller covariance matrix than any other unbiased estimate 

for x that is a linear function of y [4].  

Closing, the control system state trajectory starts from the initial state 0x  distributed  

conditional on 0W  as normal Gaussian, )ˆ,ˆ( 0,00 xxPxNx  , and obeys together with the 

observable plant outputs  to the recursions of the full LQG model given in a discrete state-

space stochastic equations (19). Then conditional on tW  ,the actual current state is 

Gaussian normal distributed  )ˆ,ˆ( ,txxtt PxNx  .  The conditional mean and variance obey 

the following updating recursions [4] (see Theorem 11.2, p.42): 

)ˆ(ˆˆ
111   tttttt xCyKBuxAx                                                                                    (24) 

)())(( 1,

1

1,1,1,,

T

txx

T

wv

T

txxv

T

txxwv

T

txxwtxx ACPLCCPRCAPLAAPQP 



                (25) 

and  the Kalman matrix gain tK  is given by: 

  v

T

txxwvt RCAPLK )(( 1,

1

1, )

T

txx CCP                                                                        (26) 

The equations (24)-(26) are developed based on the following assumption: 

  



































v

T

wv

wvw

tt

t

t

t

t

RL

LQ
vw

v

w
E

v

w
cov                                                                       (27) 

and, also taking into account that at the moment 1t  when the plant control 1tu becomes 

known but the plant output observation ty is not available (known) yet the distribution 

),( tt yx conditional on ),( 11  tt uW is jointly normal with the means: 

1111
ˆ),|(   ttttt BuxAuWxE  (Markov stochastic process also)                                   (28) 

111
ˆ),|(   tttt xCuWyE                                                                                                     (29) 

For the independent sequences of noises ),( tt vw the matrix covariance becomes more 

simple 

















v

w

t

t

R

Q

v

w

0

0
cov , a diagonal matrix that simplify also the equations (24)-(26), 

very useful for algorithm implementation in practice.  

The main idea of equivalent uncertainty principle is that “the optimal control  tu  is 

exactly the same as it would be if all unknowns were known and took values equal to their 

linear least square estimates (equivalently, their conditional means) based upon 

observations up to time t” [4]. 

Finally, the following two main issues concerning the state estimation and optimal 

control must be considered:  

(1) The state estimate tx̂ can be calculated recursively from the Kalman Filter 

stochastic equation (24): 

)ˆ(ˆˆ
111   ttttt xCyLBuxAx  
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      that contains  two main terms: 11
ˆ

  tt BuxA , and 1
ˆ(  tt xCyL  that seems to reproduce  

the noise contaminated plant dynamics, L representing the estimated observer gain: 

tttt wBuAxx 1  

 where the process noise tw  is given now by an innovation stochastic process: 

1
ˆ~~
 tttt xCyyw                                                                                                           (30) 

that can be viewed as a colored noise rather than a white noise.  

(2) If the controlled plant is complete observable in terms of the components of the 

plant state vector, i.e., tt xy   the optimal plant control is given by: 

        ttt xKu  ,  as linear combination of the plant states,                                               (31) 

then if the controlled plant is partially observable the optimal plant control is given by: 

        ttt xKu ˆ ,                                                                                                                 (32) 

as a linear combination of the best linear least squares state estimates of  tx  based on the 

available input-output measurements (observations) ),( 1tt UY at time t.  

A remarkable result can be obtained by evaluating the residual of the state: 

  tttttttt xxCyLBuxAxx )ˆ(ˆˆ
111 …. 

111111
ˆ)(ˆ)(   tttttttt AxLCxxLCABuAxLCxBuxLCA ,                  (33) 

The residual of the state given by (39) does not depend on the sequence of the past 

history of plant controls  1tU . This result is very important to decouple the optimal 

control   from optimal estimation, well known in the control systems literature as 

separation principle [4, 5, 6, 7, 8] corresponding to a control system structure  shown in 

Fig. 3. This structure it is also easy to be implemented in real time MATLAB/SIMULINK 

simulation environment.  

KALMAN FILTER ESTIMATOR

CONTROL LAW BLOCK

ttt

tttt

vCxy

wBuAxx



1

 PLANT (DYNAMICS): state 

tw
tv

PROCESS AND 

MEASUREMENT NOISES

GENERATION

)ˆ(ˆˆ
111   ttttt xCyLBuxAx

ttt xKu ˆ

Process Noise Measurement Noise

Reference Input

-

The estimate of the state

tx

tK KALMAN FILTER GAIN

FEEDBACK PATH

Plant Output ty

 
FIG. 3.  Separation Principle Control System Structure 

 

A consequence of the separation principle is that the observer and controller can be 

designed separately–the controller gain K can be computed independently of the estimated 

Kalman observer gain, L, with two decoupled dynamics: the control plant dynamics 

controlled by the dynamics of the observer estimator  through its optimal gain as is shown in 

Fig. 4, and from SIMULINK  model in Fig.10.: 
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FIG. 4. Detailed Decouple Dynamics of Control System Structure 

 

6. THE CASE STUDY – NEUTRALIZATION REACTOR INTUITIVE GENERIC 

MODEL 

 

The dynamic and steady state simulation model for pH neutralization process consists of a 

system of equations based on mass and charge balances on the continuous stirred tank reactor 

(CSTR).  An intuitive simple and complete generic dynamic model of CSTR in a  state-space 

representation is developed in [2], very useful to implement  the proposed optimal control 

system strategy and to evaluate its effectiveness  in a stochastic approach. In the  document 

paper [2] the modeling part is quite fast implemented and validated in SIMULINK 

environment, but it is quite difficult to propose a stable feedback control closed-loop for this 

highly non-linear system [2]. The following two crucial issues in developing a pH 

neutralization reactor dynamic model which describes the nonlinearity of the neutralization 

process have emerged from published  literature research [2]:  

(1) The positive hydrogen ion  ( H ) or negative hydroxyl ion concentrations ( OH ) 

from material balances equations is  extremely difficult to record, due to the fact that the 

dissociation of water and resultant (effluent)  slight change in water concentration must be 

accounted.  

(2) Instead, the material balances equations are performed on all other atomic species and 

all supplementary equilibrium interactions are used in addition with the electro-neutrality 

principle of the positive and negative ion concentrations  to simplify the equations. 
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The dynamic model of the neutralization process is developed based on the component 

material balance and the equilibrium equations under the following assumptions [2, 3]:  

(a) The acid-base reactions inside the  CSTR system are ionic and take place at a constant  

reaction rates. 

(b) The CSTR system is ideal without any pollutant influence.  

(c) Linear  mixing volume (i.e., no miscibility gap) of acid and waste water. 

(d) The valve dynamics are much faster compared to the neutralization process dynamics, 

therefore is neglected. 

(e) The pH sensor dynamics is represented by a first order lag element with a delay time 

of 50 seconds. 

(f) The volume V of the tank is constant. 

The basic intuitive model developed in [2] is suitable for this case study since it is very 

simple and  captures with enough precision the sharp nonlinear characteristics of a single 

acid-single base continuous stirred tank reactor (CSTR) neutralization process. 

 

6.1The nonlinear dynamics of CSTR – The nonlinear intuitive model 

The nonlinear dynamics of the CSTR neutralization process shown in Fig. 2  is described 

in [2] by following first-order state-space differential equation: 
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where: 

- the process state 







 

l

mol
OHCHCtx ][][)(  (the difference between  the positive 

ions  

concentration ][ HC  and negative ions concentration ][ OHC )  

- FV  is the waste water feed flow 








h

l
 

- the neutralization process inputs AVtu )(1  (HCl-acid flow) and 
V

bV
tu FF


)(2  as a 

new constant step input (disturbance). 

- ][][   OHCHCb FFF (the difference between  the positive ions concentration 

  ][ HCF  and negative ions concentration ][ OHCF in the waste water feed flow FV ) 

- ][][   OHCHCb AAA  (the difference between  the positive ions concentration 

  ][ HCA  and negative ions concentration ][ OHCA in the HCl-acid  flow AV ) 

-the neutralization process output pHty )(  

- gf , are two nonlinear functions used to describe in a compact form the nonlinear 

dynamics of the neutralization process and of the observable process output respectively.  

- V is the constant volume of the CSTR [l] 

 

6.2 The linearized dynamics of CSTR – The linear intuitive model 

A standard linearized version of the intuitive CSTR model can be obtained by 

linearizing the nonlinear functions f and g  around an operating point (i.e., an equilibrium 

point obtained in steady state, when ), keeping only the linear terms from a  Taylor  series 

development.  In state-space representation standard form the intuitive linear model of 

CSTR neutralization process is the same with those developed in scalar form as in [2]. 
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with the Jacobean matrices (scalars) given by: 
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In the linear standard state-space representation the free term from the nonlinear 

intuitive CSTR model 
V

bV
tu FF


)(2   is removed and can be viewed as a constant 

disturbance (i.e., a new step input).  

 

6.3 The nonlinear CSTR Reactor step response – Simulation results 

The step response simulation results for the nonlinear and linearized CSTR intuitive 

models are shown in Fig.5 to Fig.8  with the following process parameters values set to 

the same values as those given in [2]:  

-the feed rate of the waste water  ],[3000
h

l
VF   

-the pH in the waste water  feed rate is ,13FpH   

-the concentration of the H positive ions in the waste water is 
131010][   FpH

F HC , 
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l

mol
CCCHC wtAAmAA 7371.7/100/][ ,,,  , 
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- the concentration of the OH negative ions in the HCl-acid is 


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- the volume of CSTR V=3000[l], 

- the initial value of pH is ,130  FpHpH  

- the initial value of the concentration of the positive ions H of the solution inside the 
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- the initial value of the concentration of the negative ions OH of the solution inside 

the reactor is 

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- the set point value of the pH for linearized intuitive model is ,11sppH  

- the plant output equilibrium point is ,11 spe pHy  

- the steady-state  equilibrium point is ,1.010101010 111)14(
  spsp pHpH

ex  

and 0
1.00492.0
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









eA

FeF
e
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u , 

-initial value of CSTR state is 1.00  Fbx , so closed enough to the equilibrium 

point.  

In Figure 5 is shown the step response of the open-loop nonlinear intuitive model that 

behaves as the titration nonlinear curve of the dynamics of the neutralization process. 

This step response correspond to a maximum step value of the HCl acid flow variation 

shown in Fig. 6. (i.e., 45 l/h HCl).  

 

 
 

FIG. 5. The nonlinear titration curve of CSTR neutralization reactor – Step response 
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FIG. 6. The HCl CSTR Flow  step function  

 

For the linearized CSTR dynamics of the neutralization process similar results are 

shown in Fig. 7 to a HCl step flow shown in Fig. 8.  
 

 
 

FIG. 7. The step response  of  linear CSTR neutralization reactor 

 

 
FIG. 8. The HCl of linear CSTR Flow  step function  
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In Fig. 9 is shown the SIMULINK  model of intuitive CSTR nonlinear model, similar 

to those presented in [2] , used as experiment set up to determine the nonlinear  titration 

curve. Of the neutralization process, as is shown in Fig.5.  

 
FIG. 9. The SIMULINK  model of intuitive CSTR nonlinear model 

 

7. IMPLEMENTATION IN REAL TIME OF LQR CONTROL STRUCTURE IN 

MATLAB/SIMULINK – SIMULATION RESULTS 

 

According to the development from section 4 and based on the optimal control 

structure shown in Fig. 3, the complete LQG model is well defined by the following 

elements: 

1. The discrete time linearized process dynamics of the intuitive CSTR model in 

state-space representation obtained from (42) – (43) by replacing the derivative of the 

state using the Euler approximation: 
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2. Quadratic optimization criterion: 
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3. The recursive  stochastic Kalman Filter state estimate equation: 

)ˆ(ˆˆ
111   tttttt xCyKBuxAx                                                                                    (42) 
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4. The optimal value of the plant control: 

ttt xKu ˆ                                                                                                                           (43) 

The scalars A, B, C from description (42)-(43) of the intuitive linearized CSTR model 

are given in the section 7.3. The combined decoupled LQG SIMULINK control structure 

in LQR and LQE  for linearized CSTR dynamics is shown in Fig. 10. To eliminate the 

steady-state error between the pH input set point and the output pH actual level in the 

LQG structure it will be also integrated a PI controller. In the unit feedback path between 

the pH sensor and the comparator it will be integrated a Transport delay block, with a 

time delay of 50 seconds. The subsystems of full control structure are shown as 

SIMULINK blocks in Fig. 11 to Fig. 13.  

 
FIG. 10. The SIMULINK  model of   the  decoupled combination LQR and LQE  of the intuitive 

CSTR nonlinear model 

 
FIG. 11. The SIMULINK  model of  linear dynamics  of  LQR CSTR control system 
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FIG. 12. The SIMULINK model of  linear dynamics  of  LQE CSTR  control system  

 
FIG. 13. The SIMULINK model of  the optimal control block  of the LQG  control system 

 

Starting with a pH13 as initial level of the CSTR pH  and choosing  as a set point of 

pH level as pH11 in a combined control structure LQG with a PI controller tuned for an 

integration time coefficient to 3936.0iK  and proportionality coefficient to 

7736.9pK   the simulation results are shown in Fig. 14  to  Fig. 17. To eliminate the 

variations of high frequency in the useful signal a Moving Average Filter (MAV) it will 

be used. The windows lengths  for MAV are set  randomly to 50, and 100 respectively  
 

 
 

FIG. 14. The control of  pH value for the linearized CSTR neutralization plant from pH13 to pH11 using 

LQG control combined with PI controller (no filtered)  
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The filtered pH waste water level and the states are shown in Fig. 15 to Fig.16, and in Fig. 

17 it shown the actuator effort to keep this pH level to pH11.  

 

 
 

FIG. 15. The control of  pH value for the linearized CSTR neutralization plant from pH13 to pH11 using 

LQG control combined with PI controller (filtered by using a Moving Average Filter) 

 

 
 

FIG. 16. The filtered model and estimated states  for the linearized CSTR neutralization plant from pH13 to 

pH11 using LQG control combined with PI controller (filtered by using a Moving Average Filter) 
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FIG. 17. The filtered optimal LQR control   for the linearized CSTR neutralization plant from pH13 to 

pH11 using LQG control combined with PI controller (filtered by using a Moving Average Filter) 

 

For a new set point of pH level starting the neutralization process from pH13 to 

pH10.5, using a combined control structure LQG with an I controller having the 

integration time coefficient set to 0229.0iK  the simulation results are shown in Fig. 

18  and Fig. 19. The windows lengths  for Moving Average Filter at this time are set to 

500, 250 respectively.  
 

 
 

FIG. 18 The control of  pH value for the linearized CSTR neutralization plant from pH13 to pH10.5 using 

LQG control combined with an I controller (filtered by using a Moving Average Filter) 
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In figure 18 it is easy to see the good accuracy of the controlled level of the CSTR  pH 

neutralization plant from pH13 to pH10.5 with a controller effort shown in Fig.19. After 

almost 600 seconds the optimal effort of the LQR controller becomes very small. 

 

 
 

FIG. 19. The filtered optimal LQR control   for the linearized CSTR neutralization plant from pH13 to 

pH10.5 using LQG control combined with an I controller (filtered by using a Moving Average Filter) 

 

CONCLUSIONS 

 

In this research paper is developed a stochastic LQG  approach to solve a particular 

optimization problem, such as the optimal control of pH level of the waste water CSTR 

neutralization plant. The control system design of  pH neutralization process is a very 

difficult task to be accomplished since the model of CSTR neutralization plant is highly 

nonlinear (see the titration curve), and also it is very complex. Furthermore, the standard 

control strategies design fail unfortunately when the system performance is concerned. In 

the new approach the  proposed control strategy  proved its effectiveness and high 

accuracy in terms of its performance compare to the traditional control mechanisms.  The 

simulations results  are carried out in an attractive real-time  MATLAB/SIMULINK 

environment and presented in detailed in the last two sections. 
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