Review of the Air Force Academy No.1 (33)/2017

STOCHASTIC OPTIMAL CONTROL OF pH NEUTRALISATION
PROCESS IN A WATER TREATMENT PLANT

Elena Roxana TUDOROIU, Sorin Mihai RADU, Wilhelm KECS, Nicolae ILIAS
University of Petrosani (tudelena@mail.com)

DOI: 10.19062/1842-9238.2017.15.1.7

Abstract: This paper opens a new research exploration direction in a real time
MATLAB/SIMULINK simulation environment to optimize the pH neutralization process level of a
generic wastewater treatment plant following a stochastic approach. The control system design
of pH neutralization process is a very difficult task to be accomplished due to its severe
nonlinearity and complexity characterized by a persistent change in the chemical systems with
complex kinetic and thermodynamic reactions, nonlinear responses, a sensitive environment
uncertain results and large variety of operating conditions to be covered. Furthermore, the
standard control strategies design fail unfortunately when the system performance is concerned.
In the new approach the proposed control strategy proved its effectiveness and high accuracy in
terms of its performance compare to the traditional control mechanisms. To validate all these
results a simplified intuitive nonlinear model of the neutralization reactor from the literature is
considered. The solution of the optimization problem is found in a Linear Quadratic Gaussian
optimization framework. In this new approach the nonlinear dynamics of the neutralization
reactor must be linearized around an equilibrium point, the cost function is quadratic, and the
process and measurement noises are white Gaussian noises, independent, of zero mean, and
normally distributed. The system’s control is Markovian and linear as a combination of
observable or estimated states. In addition the implementation of stochastic optimal control
approach is more restrictive by introducing a few key concepts and requirements such as
controllability, stabilizability, observability, and the certainty-equivalence principle, as well as
the well-known separation principle between optimal estimation and optimal control.

Keywords: LQG stochastic control, control system optimization, Linear Quadratic regulator,
Linear quadratic estimator, neutralization reactor, MATLAB/SIMULINK

1. INTRODUCTION

The acidity of any solution is assessed by measuring its pH level (e.g. the
concentration of positive Hydrogen ions (H*) in the solution) that ranges in a scale from
1 to 14. The value of 7 for the pH level in any solution at room temperature indicates that the
solution is neutral. According to this scale if the pH of the solution at the room temperature is
less than 7, the concentration of Hydrogen ions (H*) in the solution is high, and the solution
is considered to be acid [1]. On the other hand if the pH level of the solution at room
temperature is greater than 7, the concentration of negative hydroxyl ions (OH™) in the
solution is high and the solution is considered to be alkaline or a base [1]. According to
environmental safety standards for industry all treated water effluents must have the pH level
of either 8 or 6 [1]. The control system design of pH neutralization process is a very difficult
task to be accomplished due to the following reasons [1, 2, 3]:

1) the dynamics of pH neutralization process is severely nonlinear and of high
complexity as is shown in Fig. 1(a, b) for a particular case of the titration curve for acid-base
process reaction [1].
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2) apersistent changes in the chemical systems

3) complex kinetic and thermodynamic reactions

4) nonlinear response of the process,

5) asensitive environment uncertain results

6) a large variety of operating conditions to be covered.
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FIG. 1. Titration curve for acid-base process reaction (a snapshot from [1], p.36)
(@  Hydrochloric acid
(b)  Phosphoric acid

The classical control strategies design fail in the majority of the cases when the system
performance is concerned. In the new stochastic approach the proposed optimal control
strategy proved its effectiveness and high accuracy in terms of its performance compare to
the traditional control mechanisms. To find an optimal solution to this optimization problem
a Linear Quadratic Gaussian (LQG) control strategy is proposed. To implement the new
LQG strategy the following requirements need to be satisfied [4, 5, 6, 7, 8]:

(1) the nonlinear dynamics of the neutralization reactor must be linearized around an
equilibrium point

(2) the cost function is quadratic

(3) the process and measurement noises are white Gaussian, independent, of zero mean,
and normally distributed

(4) the system’s control is Markovian and linear as a combination of observable or
estimated states.

The optimization problem consists of two distinct parts, that can be easily implemented in
MATLAB/SIMULINK framework [4, 5, 6, 7]:

(@ Linear Quadratic Regulation (LQR) problem

(b) Linear Quadratic Estimation (LQE) problem

Combining the solutions of the both LQR and LQE problems is a practical real time
implementation tool of the LQG control strategy in a feedback closed-loop control system to
find the optimal values of the pH level for a neutralization reactor based on a nonlinear
intuitive generic model [4, 5, 6, 7, 8].

2. THE NEUTRALIZATION REACTOR DESCRIPTION
In Figure 2 is shown the layout of a simple neutralization reactor used in the chemical

industry, where an alkaline input flow (fluent) is neutralized with acid (reagent) in a
continuously stirred tank reactor (CSTR) [2]. For this case study the waste water enters the

reactor with a federate of d;/tF =V, = ZOOO[IE] at a pH. =13(strongly alkaline); the input

acid d;i’* =V, and base d(;/tB =V, flows are dosed and controlled by a PI regulator.
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A pH-probe measures pH-actual value of the neutralized solution inside the reactor
during the transient and steady state neutralization process, transmitting its feedback to
the controller with a lag time of 50 seconds. The reactor volume is assumed to be
constant, with a capacity of 4000[l], and the maximum value of the HCl-acid flow with a

25% concentration is 30[%]. The pH target value is 10 and to simplify the dynamic model

only acid addition is considered, due to the fact that the waste water is already alkaline.

Acid feed V, Base feed Vg
CalH"],Ca[OH] Ca[H™].Ce[OH]
(@)
Wastewater
feed
. ) Outlet
PHe, Ve F?H -
Ve+WV,+Vg

pH-probe

FIG.2. Neutralization CSTR reactor (a snapshot from [2], p.2)
3. FORMULATION OF THE CONTROL OPTIMIZATION PROBLEM

The control optimization problem is formulated based on the well-known optimality
principle [4, 5, 6, 7]. According to this principle the optimization problem consists in a
sequence of consecutive stages such that “from any point on an optimal trajectory, the
remaining trajectory is optimal for the corresponding problem initiated at that point” [4].

The optimality principle is a key concept for defining a control optimization problem
(COP) by the following elements given in [4]:

1. .. “The dynamics of the plant represented in continuous and discrete state-
equation (law motion):
X = F(x,u,t) (1)

where t=0,12,...is the discrete-time that takes integer values, x, € R"is the value of the
control system state vector at time t € 3, calculable from known quantities and obeys a law
motion (1), u, € R"is the control system input vector value at time t € 3, that is chosen on
basis of knowing the set of previous controlsuptotime t—1€ 3, U, , ={u, ;,U, ,,...,Us}.

2. The cost function to be optimized:

C =S c(x.u.t)+C,(x) @

by a suitable choice of the set of controls U, ; ={u,_;,u,_,,...,Uy}

3. An optimal control law attached to the law motion (1) and the cost function (2),
known as the optimality equation (dynamic programming equation (DP) or equivalent
Bellman equation) to find the optimal value of the control (optimal actuator effort of the
control system):
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F(x,t) =inf [c(x,u,.t) + F(f(x,u,t)t+1)], for t<s (3)

with the terminal condition: F(x,,s)=C,(X;)
where the future cost function defined in (2) from time t € Jonwards is defined as:

C. =S e(x.u,,7)+C,(x) @

=t
with the minimal value calculated as solution of an optimization problem over the
sequence of controls {u, ,,u,_,,...,.u.}:

Fx.=, inf | IC] ®

Ug_g,Ug g pmmns Uy

Furthermore, the DP equation (3) defines an optimal control problem that is related
also to a feedback or closed — loop control, defined as:

u =k(x.,t) , (6)
so function only of x, and t, in contrast to open-loop control system where the sequence
of controls U, ={u, ,,u, ,,...,u,} must be calculated all once at time t=0.... ’[4].

Closing, the DP equation expresses the optimal control solution in close form as in
(6) and is also a recursive backward equation in time that gives the optimal control
solution ug ,,u, ,,...,u,, recursively at the time moments s—1,s—2,...0, governed by a
simple rule that the latter control policy is decided first [4]. Let now to consider the
stochastic evolution of the neutralization reactor plant by introducing two sequences
X ={X, % 4, %}, and U, ={u,,u,,,....u,} that incorporate the history of evolution at
time t of plant states and controls, x and u respectively. The evolution of the pH level of
neutralization process is described by a state vector denoted by a variable x that takes
the value X, attime t that satisfies the following requirements given in[4]:

1. “...The state vector incorporates a Markov dynamics, i.e. the stochastic version of
the dynamics equation of the plant, given by:
P(Xt+1 | Xt’Ut) = P(Xt+1 | Xt'ut) (7)

2. The COP cost function is decomposable with respect to X,,U,, as is shown in (2).
3. The current values of all state vector components X, are observable, i.e. xis
known at the time at which the control u, must be chosen....”
Let us now to designate the observed history of the plant evolution at time t by

W, = (Xt’Ut—l)’ (8)
that is related to the cost function C given in (2) at time s [4]:
C=CW,) )

Also, the minimal expected cost function from time t € 3 onwards is defined as in
[4]:
F(\Nt) = “;lrf E;r[CI |Wt] (10)
where E_[] is the stochastic expectance operator (stochastic average) of the conditional
cost C, with respect to W,, and 7 is a control policy, i.e. a rule to chose the plant control
sequence U g,...,U, .
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Based on this preparatory elements can be formulated the following remarkable result
from the control optimality (see Theorem 1.3 in [4], p. 4):
“...The minimal expected cost F(W,) is a function of x, and t alone, let say

FW,) = F(x,t), that obeys the optimality DP equation (3):

F(x,t) =inf{c(x,u,,t) + E[F(x,,,t +1)| x,u]} for t<s (11)
with the terminal condition
F(x;,8) =C,(X,) (12)

Moreover, the minimizing value of the control u, = k(x,,t) in (11) is optimal.... .

The stochastic approach from this section is useful in the next section to develop a
particular case of linear quadratic Gaussian optimization problem.

4. THE LINEAR QUADTRATIC REGULATION OPTIMIZATION
PROBLEM

In this section the Linear Quadratic Regulation (LQR) optimization problem will be
defined, and in the next section LQR will be implemented in a MATLAB/SIMULINK
simulation environment to control the pH level of feedback closed-loop control system
CSTR chosen as case study.

Using the preliminary theoretical results from previous section the LQR optimization
problem will be defined based on the following elements [4]:

(a) The process dynamics linearized in a state-space representation, including the
process and measurement noise:

X1 = AX + BuU, + W, (13)
Y, =Cx +Du, +v,

with w,,v, the process (w,) and measurement (v,) white Gaussian noises (i.e., with
normal distribution functions) at time t € 3 are independent, of zero mean, and with the
covariance matrices Q, , and R, respectively :

E[w,]=0,E[v,]=0, E[ww 1=Q,, E[vVv/]1=R,, E[ww.]=0, E[vv.]=0, for s #t
(14)
and, also
Elwy; =0, (15)

For independent stochastic noise variables, A, B, C, D are matrices of dimensions
nxn,nxm,pxn,and pxmrespectively. The variable y, € R”from equations (13)
represents the measurable plant output.

(b) No all of the n" — components of the state vector x e R"are observable

(measurable) at a given time te 3
(c) A quadratic optimization criterion given by:

s-1
J = c(%, U ) + I (%) (16)
t=0
with one step ahead and a terminal costs [4]:
;
x|'|P, PL|[X
c(x,u)=x"Px+U"P,x+Xx"Plu+u'P,u :{ } { X X“}{ } P,=P,=S (17)
uj[Rx PRuJu
J.(X)=xII.x" (terminal quadratic cost) , IT, € R™" (18)
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The quadratic forms P,

XX 1

S, P, in(17) have appropriate dimensions and are non-
negative definite (i.e., x"P,x>0,u'Sx>0,x"STu>0). In addition, the matrix P,,is
P

assumed to be positive definite (i.e., u'P,u>0), and the matrices P, P,
symmetric [4].
This model is suitable for control system regulation for which the state trajectory x is
controlled by u such that to end in the point (0, 0) (i.e., steering to a critical value) [4].
Also, the closed form of optimal solution of the COP defined in (13)-(18) is given for
free noise but can be adapted to the noise disturbances included in the dynamic model of

the plant asis [4], p. 25.

IT, must be

5. KALMAN FILTER - CERTAINTY EQUIVALENCE AND SEPARATION
PRINCIPLES

In this section is introduced the famous Kalman Filtering concept concerning the
stochastic state estimation, and also two of the most used principles in a stochastic
control system optimization will be related to the this concept:

(a) the certainty equivalence principle

(b) the separation principle

The Kalman Filter is a powerful and popular tool for the stochastic state estimation
that was proposed by R.E. Kalman in 1960. It can be viewed as an important moment in
the evolution of control system theory related to that time.

The full Linear Quadratic Gaussian (LQG) model is based on four main assumptions
[4]:

(1) The dynamics of the process is linearized (i.e., represented by stochastic
differential equations given in (13))

X1 = AX +Bu + W,

19

Y, =Cx, +Du, +v, (19)
(2) The cost function is quadratic:

c(x,u)=x"P.x+2u'Sx+u'P_u (20)

(3) The process and measurement noises are Gaussian (normal distributions,
w, < N(0,Q,),v, « N(O,R,)) with w,,v, the process (w,) and measurement (v,) white
Gaussian noises (i.e., with normal distribution functions) at time t e 3, of zero mean,
independent (uncorrelated), and the covariance matrices Q,,, and R, respectively :

E[w,1=0,E[v,]1=0, E[ww ]1=Q,, E[vv/ ]=R,, E[ww.]=0, E[vv.]1=0,for s=t ,
and E[wy, ]=0, since stochastic noise variables are independent

(4) No all the components of the state vector of the control process are observable
(measurable).

A remarkable result related to the Gaussian random variables is provided by
Lemmall.1 together with its proof in[4], p. 41.

This Lemma makes the link between Gaussian nature of the random variables and the
stochastic state estimation, well-known in the literature as “linear least squares
estimates”. According to this Lemma “if x and y are two Gaussian random variables
jointly normal distributed with zero mean and the covariance matrix:

X X Vxx ny
E([J[X = CO\{LD ) {Vyx Vyy} e
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then the distribution of x conditional on y is also Gaussian, with:

E(x|y)=V,V,, 'y (conditional mean), and (22)
cov(x|y) =V, —V,,V,,V,, (conditional covariance) (23)

The linear least square estimate of x in terms of y (also, known for Gaussian case as
the maximum likelihood estimator) is defined as [4]:
%=Hy=P,P'y, with H=RP' ..~

Remark: Even without the assumption that x and y are jointly normal distributed,
this linear function of y has a smaller covariance matrix than any other unbiased estimate
for x that is a linear function of y [4].

Closing, the control system state trajectory starts from the initial state x, distributed
conditional on W, as normal Gaussian, X, oc N(ﬁoﬁxx,o), and obeys together with the
observable plant outputs to the recursions of the full LQG model given in a discrete state-
space stochastic equations (19). Then conditional on W, ,the actual current state is
Gaussian normal distributed X, oc N(X,, stx’t). The conditional mean and variance obey
the following updating recursions [4] (see Theorem 11.2, p.42):

X =A%, +Bu_; + K (Y, —CX,) (24)
Pt = Qu + AP, A" = (L, + AP, .C")(R, +CP,, . ,C) (L, +CPy, ,A") (25)
and the Kalman matrix gain K, is given by:

K, = (L + AR, ,CT)(R, + CP,, ,C")™ (26)

The equations (24)-(26) are developed based on the following assumption:

o)<l o K] g

and, also taking into account that at the moment t —1 when the plant control u, , becomes

known but the plant output observation vy, is not available (known) yet the distribution

(X, y,) conditional on (W, ,,u, ,) is jointly normal with the means:

E(x |W,_,,u,,) = AX_, + Bu,_, (Markov stochastic process also) (28)

E(Yt |Wt—1’ ut—l) = C)’Zt—l (29)
For the independent sequences of noises (w,,V,) the matrix covariance becomes more

0
t
very useful for algorithm implementation in practice.
The main idea of equivalent uncertainty principle is that “the optimal control u, is
exactly the same as it would be if all unknowns were known and took values equal to their

linear least square estimates (equivalently, their conditional means) based upon
observations up to time t” [4].

Finally, the following two main issues concerning the state estimation and optimal
control must be considered:

(1) The state estimate X can be calculated recursively from the Kalman Filter
stochastic equation (24):
X, = A%, +Bu,, +L(y, -CX,,)

0
simple covtwtj = {QW RJ , a diagonal matrix that simplify also the equations (24)-(26),
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that contains two main terms: AX,_, +Bu, ,, and L(y, —CX,_, that seems to reproduce
the noise contaminated plant dynamics, L representing the estimated observer gain:
X1 = A% +BuU + W,
where the process noise w, is given now by an innovation stochastic process:
VTIt = yt =Y _C)A(t—l (30)
that can be viewed as a colored noise rather than a white noise.

(2) If the controlled plant is complete observable in terms of the components of the
plant state vector, i.e., y, = x, the optimal plant control is given by:

u, = K,x,, as linear combination of the plant states, (31)
then if the controlled plant is partially observable the optimal plant control is given by:
U, = Kt)A(t’ (32)

as a linear combination of the best linear least squares state estimates of x, based on the
available input-output measurements (observations) (Y,,U,_,)at time t.
A remarkable result can be obtained by evaluating the residual of the state:
& =% —%X =A%, +Bu_ +L(y, -CX_,)— X%, =....
=(A-LC)X_, +Bu,_, + LCx, — Ax,, —Bu,; =(A-LC)X_, + LCx, — Ax,,, (33)
The residual of the state given by (39) does not depend on the sequence of the past
history of plant controls U, ;. This result is very important to decouple the optimal

control ~ from optimal estimation, well known in the control systems literature as
separation principle [4, 5, 6, 7, 8] corresponding to a control system structure shown in
Fig. 3. This structure it is also easy to be implemented in real time MATLAB/SIMULINK
simulation environment.

PROCESS AND
MEASUREMENT NOISES
GENERATION

wl |V,
Process Noise Measurement Noise

A 4 \ 4
Ref: | t
elerence anih\ Xiq = AXt + BU‘ +W Plant Output yt
— >
Y Vi =Cx +V,
PLANT (DYNAMICS): state X,

i 3

y

% = AX_, +Bu +L(y, —CX)

KALMAN FILTER ESTIMATOR

The estimate of the state |‘<t KALMAN FILTER GAIN

u, = K;X,
CONTROL LAW BLOCK

FEEDBACK PATH

FIG. 3. Separation Principle Control System Structure

A consequence of the separation principle is that the observer and controller can be
designed separately—the controller gain K can be computed independently of the estimated
Kalman observer gain, L, with two decoupled dynamics: the control plant dynamics
controlled by the dynamics of the observer estimator through its optimal gain as is shown in
Fig. 4, and from SIMULINK model in Fig.10.:
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DYNAMICS OF OPEN-PLANT
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FIG. 4. Detailed Decouple Dynamics of Control System Structure

6. THE CASE STUDY — NEUTRALIZATION REACTOR INTUITIVE GENERIC
MODEL

The dynamic and steady state simulation model for pH neutralization process consists of a
system of equations based on mass and charge balances on the continuous stirred tank reactor
(CSTR). An intuitive simple and complete generic dynamic model of CSTR ina state-space
representation is developed in [2], very useful to implement the proposed optimal control
system strategy and to evaluate its effectiveness in a stochastic approach. In the document
paper [2] the modeling part is quite fast implemented and validated in SIMULINK
environment, but it is quite difficult to propose a stable feedback control closed-loop for this
highly non-linear system [2]. The following two crucial issues in developing a pH
neutralization reactor dynamic model which describes the nonlinearity of the neutralization
process have emerged from published literature research [2]:

(1) The positive hydrogen ion (H™) or negative hydroxyl ion concentrations (OH™)
from material balances equations is extremely difficult to record, due to the fact that the
dissociation of water and resultant (effluent) slight change in water concentration must be
accounted.

(2) Instead, the material balances equations are performed on all other atomic species and
all supplementary equilibrium interactions are used in addition with the electro-neutrality
principle of the positive and negative ion concentrations to simplify the equations.
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The dynamic model of the neutralization process is developed based on the component
material balance and the equilibrium equations under the following assumptions [2, 3]:

(@) The acid-base reactions inside the CSTR system are ionic and take place at a constant
reaction rates.

(b) The CSTR system is ideal without any pollutant influence.

(c) Linear mixing volume (i.e., no miscibility gap) of acid and waste water.

(d) The valve dynamics are much faster compared to the neutralization process dynamics,
therefore is neglected.

(e) The pH sensor dynamics is represented by a first order lag element with a delay time
of 50 seconds.

(f) The volume V of the tank is constant.

The basic intuitive model developed in [2] is suitable for this case study since it is very
simple and captures with enough precision the sharp nonlinear characteristics of a single
acid-single base continuous stirred tank reactor (CSTR) neutralization process.

6.1The nonlinear dynamics of CSTR — The nonlinear intuitive model
The nonlinear dynamics of the CSTR neutralization process shown in Fig. 2 is described
in [2] by following first-order state-space differential equation:

dx(®) __Ve EIVWASLUN Vebe _

o -V x(t) + ( VX(t)+V)U1(t)+ y f(x(1),u (t),u, () (34)
Y(®) =—log,,[0.5(x(t) +(x(O)f +4x10™)]= g(x(t)) (35)
where:

- the process state x(t) =C[H*"]-C[OH ][ml_ol} (the difference between the positive
ions
concentration C[H "] and negative ions concentration C[OH "])

- V. is the waste water feed flow [H

- the neutralization process inputs u,(t) =V, (HCl-acid flow) and u,(t) :VFTbF as a

new constant step input (disturbance).
- b. =C.[H"]-C.[OH ] (the difference between the positive ions concentration

C.[H "] and negative ions concentration C.[OH ~]in the waste water feed flow V, )
- b, =C,[H"]-C,[OH 7] (the difference between the positive ions concentration

C,[H*] and negative ions concentration C,[OH ~]in the HCl-acid flow V,)
-the neutralization process output y(t) = pH
- f,gare two nonlinear functions used to describe in a compact form the nonlinear

dynamics of the neutralization process and of the observable process output respectively.
- V is the constant volume of the CSTR [I]

6.2 The linearized dynamics of CSTR — The linear intuitive model

A standard linearized version of the intuitive CSTR model can be obtained by
linearizing the nonlinear functions f and g around an operating point (i.e., an equilibrium
point obtained in steady state, when ), keeping only the linear terms from a Taylor series
development. In state-space representation standard form the intuitive linear model of
CSTR neutralization process is the same with those developed in scalar form as in [2].
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% = AX(t) + Bu(t) (36)
y(t) = Cx(t) (37)

with the Jacobean matrices (scalars) given by:
A= @j(xe,ue) SR AR (@](xyue) D%
X

Vv ou Vv
¢ :(a_g)(xe,ue) S -
o IN(10) [« + 410 ™

-4
x, =-10"*u, = -V, 10 +b'z —vV, L —be
b, +10° b, + X

e

(38)

In the linear standard state-space representation the free term from the nonlinear

intuitive CSTR model uz(t)=vi/bF

disturbance (i.e., a new step input).

6.3 The nonlinear CSTR Reactor step response — Simulation results

is removed and can be viewed as a constant

The step response simulation results for the nonlinear and linearized CSTR intuitive
models are shown in Fig.5 to Fig.8 with the following process parameters values set to

the same values as those given in [2]:

-the feed rate of the waste water \/'F = 3000[%],

-the pH in the waste water feed rate is pH; =13,

-the concentration of the HTpositive ions in the waste water

C.[H']=10"™F =105,
—14

-the concentration of the OH ~negative ions is C[OH ~]=10%!""1 =107,

-b, = (C[H ]~ C[OH ])[mTO'} =10 -10" = -o.1[m|—°'} ,

-maximum feed rate of the HCl-acid pump is Q.4 pump = 45&}

-HCl-acid mass concentration is C, , = 25%,

- HCl-acid mol weight is C, =36.46[%]

. o (37_CAm) CAm
- HCl-acid density is Ch, = T’xlOOOJr 37’ x1190 =1.1284 [g/l]

-the concentration of the HTpositive ions in the HCl-acid

CA[H +] = CA,m /100 x CAvp /CA"M - 7.7371|:m|_0I} '

is
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- the concentration of the OH negative ions in the HCl-acid is
-14 =

CL[OH ]=10%1""7 =10"" =

~1.29256 — 15[ mlo'} ]

b, =(C,[H*]—C,[OH" ]){mo'} 77371{”1'0'}

- the volume of CSTR V=3000[l],
- the initial value of pH is pH, = pH; =13,
- the initial value of the concentration of the positive ions H™ of the solution inside the

reactor is Coers o[H ]1=10""" =10 13{mlol} |

- the initial value of the concentration of the negative ions OH ~ of the solution inside

the reactor is Cogpy o[OH ] =10 =10" [mlol]

oo o = (Ceom ofH T~ Coore o[OH- ])[m"'}——m[ml"'}

- the set point value of the pH for linearized intuitive model is pH, =11,

- the plant output equilibrium point is y, = pH, =11,

- the steady-state equilibrium point is x, =10 —10™"'*™¥ =10 —10* = 0.1,
Ve (%, —b:) 3000(-0.1+0.1) _

and u, = = =0,
b, — X, —0.0492+0.1
-initial value of CSTR state is x, =b. =—-0.1, so closed enough to the equilibrium
point.

In Figure 5 is shown the step response of the open-loop nonlinear intuitive model that
behaves as the titration nonlinear curve of the dynamics of the neutralization process.
This step response correspond to a maximum step value of the HCI acid flow variation
shown in Fig. 6. (i.e., 45 I/h HCI).

The CSTR nonlinear Reactor Step Response - Monlinear titration curve
14 T T T T I I I I I
H H H pHCSTR nonlinear titration curve

pHCSTR

time [s]

FIG. 5. The nonlinear titration curve of CSTR neutralization reactor — Step response
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FIG. 6. The HCI CSTR Flow step function

For the linearized CSTR dynamics of the neutralization process similar results are
shown in Fig. 7 to a HCI step flow shown in Fig. 8.

pHCSTR

HC! Flow [Vh]

15

The CSTR linearized Reactor Step Response

! ! ! ! ! ! ! ! !

pHCSTR linear model

i i i i i i i i i
10 20 30 40 50 60 70 80 90 100

time [s]

FIG. 7. The step response of linear CSTR neutralization reactor
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FIG. 8. The HCI of linear CSTR Flow step function
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In Fig. 9 is shown the SIMULINK model of intuitive CSTR nonlinear model, similar
to those presented in [2] , used as experiment set up to determine the nonlinear titration
curve. Of the neutralization process, as is shown in Fig.5.

e

x_nonlinearmodel

Acid_Flow

% pHCSTR_nonlinearmodel
XCSTR_dot J
) RN XCSTR
Acid_Pump_Cap '\EI ¥ xCSTRpH_nonlinearmodel
(1) b Integrator pHLCalculus
STEPINPUT  sturation  vAdot
" E—D

PHCSTR_nonlinmodel

Product

FIG. 9. The SIMULINK model of intuitive CSTR nonlinear model

7. IMPLEMENTATION IN REAL TIME OF LQR CONTROL STRUCTURE IN
MATLAB/SIMULINK - SIMULATION RESULTS

According to the development from section 4 and based on the optimal control

structure shown in Fig. 3, the complete LQG model is well defined by the following
elements:

1. The discrete time linearized process dynamics of the intuitive CSTR model in

state-space representation obtained from (42) — (43) by replacing the derivative of the
state using the Euler approximation:

dx() _ Xa =%
dt T.

S

were T, is the sampling time [s], t =kT,k =0,1,2,...,N - the discrete-time moments
Xy = @+ AxT)x +TBu, +w,
Y, =Cx +V,

w W, 0
CO{Vt]:E{(VtJ(Wt Vt)}=|:QOW } w,,V, -white Gaussian process and
t t

measurement noises, zero mean and independent, with the covariance matrices Q, and
R, respectively.
2. Quadratic optimization criterion:

: (39)

(40)

s—1
Jo=min EQ_X"Px+2u"Sx+u"Pu) + Jy(X,) (41)
u t=0

3. The recursive stochastic Kalman Filter state estimate equation:
)?t = A)’zt—l + But—l + Kt(yt - C)A(t—l) (42)
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4. The optimal value of the plant control:
u, = K%, (43)

The scalars A, B, C from description (42)-(43) of the intuitive linearized CSTR model
are given in the section 7.3. The combined decoupled LQG SIMULINK control structure
in LQR and LQE for linearized CSTR dynamics is shown in Fig. 10. To eliminate the
steady-state error between the pH input set point and the output pH actual level in the
LQG structure it will be also integrated a PI controller. In the unit feedback path between
the pH sensor and the comparator it will be integrated a Transport delay block, with a
time delay of 50 seconds. The subsystems of full control structure are shown as
SIMULINK blocks in Fig. 11 to Fig. 13.

pHsp + =pH
l PIfs) . B =P
pH SET POINT - B uft)

PICONTROLLER X_model

D

D

CSTR DYNAMICS 4:I_.|§|
1

Lt+——»u yhat = pHhat —>|E|

Yy xhat

Add

ESTIMATOR DYNAMICS

uopt Kalman Filter Estim ator

Transport
Delay

[P le
R |

OPTIMAL CONTROL ELOCK

FIG. 10. The SIMULINK model of the decoupled combination LQR and LQE of the intuitive
CSTR nonlinear model

» x_model
To Workspace1
p{ pH_model
Xx_model
To Workspace
Dt
U(t) ». X_dot > _1 X > C ;
S L( )
P+ Integrator Gain2 : g —1
9 Add1 y=pH
]ﬂ|'|,\[ Add
Band-Limited
White Noise ]ﬂp""
AL Band-Limited
\r White pH Sensor Noise, v(k)

Gain

FIG. 11. The SIMULINK model of linear dynamics of LQR CSTR control system
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> xhat

To Workspace1

—(2) p|  pHhat

x_hat
To Workspace
>—f
xhat_dot
u ' i LIS NGD'
s
Add1 P+ L~ yhat = pHhat
Add Integrator Gain2
A 4

\AIL Add2|1 j

Kest L

R

&>,

FIG. 12. The SIMULINK model of linear dynamics of LQE CSTR control system

Kalman Filter Estimator E uopt

Gain
FIG. 13. The SIMULINK model of the optimal control block of the LQG control system

Starting with a pH13 as initial level of the CSTR pH and choosing as a set point of
pH level as pH11 in a combined control structure LQG with a Pl controller tuned for an
integration time coefficient to K, =-0.3936 and proportionality coefficient to

K, =-9.7736 the simulation results are shown in Fig. 14 to Fig. 17. To eliminate the

variations of high frequency in the useful signal a Moving Average Filter (MAV) it will
be used. The windows lengths for MAV are set randomly to 50, and 100 respectively

The pH evolution of CSTR neutralization reactaor
15 T T T T I I

I I
pH moadel nonfiltered
—+— pH set point value

i i i i i i i i i
100 200 300 400 500 600 700 800 900 1000
time [s]

FIG. 14. The control of pH value for the linearized CSTR neutralization plant from pH13 to pH11 using
LQG control combined with PI controller (no filtered)
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The filtered pH waste water level and the states are shown in Fig. 15 to Fig.16, and in Fig.
17 it shown the actuator effort to keep this pH level to pH11.

The pH evolution of CSTR neutralization reactor
15 T T T T T I I I I
: : : : ' pH model filtered
—+— pH set point value
pH estimated filtered

T
'
' . ' ' '
-_-.Lh PR W WP L .
T T
'
'

____________________________________________________________

i i i i i | i i i
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time [s]

FIG. 15. The control of pH value for the linearized CSTR neutralization plant from pH13 to pH11 using
LQG control combined with PI controller (filtered by using a Moving Average Filter)

The model and estimated states of CSTR neutralization reactor

0-1 T T T T I I I I
: : : filtered model state

filtered estimated value of model

' ' ' I
' ' ' ' ' ' ' I
' ' ' ' ' ' ' I

002 4------ Locooo- dooaooo [ — [ [T deoooo- [ |, [ A, —
8 d 1 v v d 1 v i
' ' ' ' ' ' ' !

Positive Hydrogen lons Concentration [maol/l
=]

PN N
7% U N S R S N N S
T i i td
01 | | | | | | | | |

100 200 300 400 500 600 700 800 900 1000
time [s]

FIG. 16. The filtered model and estimated states for the linearized CSTR neutralization plant from pH13 to
pH11 using LQG control combined with PI controller (filtered by using a Moving Average Filter)
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The optimal control value and the closed-loop CSTR control
100 T T T

T I I I I I
: filtered optimal LQR control
filtered closed-loop control

_______________________________________________________________

g -----------------------------------------------------------

z :

_ﬂ .............

= : : i

< 20 : . .
B L TP T e e e PEEED -
—EU' ______ ':f ______ i B | r--—=-=--- 'i ______ b D | :r _____ -
_BU ______ % ______ N [ Le-eean demee e m . [ i. _____ —
100 | | I | | | | i

|
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time [5]

FIG. 17. The filtered optimal LQR control for the linearized CSTR neutralization plant from pH13 to
pH11 using LQG control combined with PI controller (filtered by using a Moving Average Filter)

For a new set point of pH level starting the neutralization process from pH13 to
pH10.5, using a combined control structure LQG with an | controller having the

integration time coefficient set to K, =-0.0229 the simulation results are shown in Fig.

18 and Fig. 19. The windows lengths for Moving Average Filter at this time are set to
500, 250 respectively.

The pH evolution of CS5TR neutralization reactor

T T T I I I I

: : : pH model filtered

pH set point value
pH estimated filtered

'
= ] . ! " ' '

] ] 9 v w v ] I, iy’ B 2
1 ek e e S ) R

] ] ' ] ] ] ] ] ]

' ' ' ' ' ' ' '

pH

0 i i i i i i i i i
02 04 06 038 1 12 14 16 138 2

time [s] x 10"

FIG. 18 The control of pH value for the linearized CSTR neutralization plant from pH13 to pH10.5 using
LQG control combined with an | controller (filtered by using a Moving Average Filter)
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In figure 18 it is easy to see the good accuracy of the controlled level of the CSTR pH
neutralization plant from pH13 to pH10.5 with a controller effort shown in Fig.19. After
almost 600 seconds the optimal effort of the LQR controller becomes very small.

The optimal contral value and the closed-loop CSTR control

100 ! ! ! ! I I I I I
: : : : filtered optimal LQR control
80 Ty T CTTTTTTTTTT filtered closed-loop control

7 NSRS SN SN SN SR FNUNUN SO NSNS N

Acid flow [Ifh]

7o (S N T T R T T N
time [s] x 10"

FIG. 19. The filtered optimal LQR control for the linearized CSTR neutralization plant from pH13 to
pH10.5 using LQG control combined with an | controller (filtered by using a Moving Average Filter)

CONCLUSIONS

In this research paper is developed a stochastic LQG approach to solve a particular
optimization problem, such as the optimal control of pH level of the waste water CSTR
neutralization plant. The control system design of pH neutralization process is a very
difficult task to be accomplished since the model of CSTR neutralization plant is highly
nonlinear (see the titration curve), and also it is very complex. Furthermore, the standard
control strategies design fail unfortunately when the system performance is concerned. In
the new approach the proposed control strategy proved its effectiveness and high
accuracy in terms of its performance compare to the traditional control mechanisms. The
simulations results are carried out in an attractive real-time MATLAB/SIMULINK
environment and presented in detailed in the last two sections.
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