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Abstract: The paper introduces a probability distribution as a mixture between a 
Gamma(0, λη, ν ) distribution and an exponential  Exp(µ) distribution of η. The first and 

second order moments are calculated, together with the variance. Algorithms for simulation of 

the introduced distribution are presented. These include the inverse method and the rejection 

method. The last section discusses an application to reliability of a system with n components, 
with stochastic independent lifetimes, namely the distributions of maximum W and minimum 

V of lifetimes, when components have the introduced distribution. Simulation of W and V is 

also presented. The last part of the paper presents distributions of V and W when the number of 
components is (truncated) random with distributions: Poisson(λ), Geometric(p), or 

Binomial(n, p), n ≥ 1. Simulation of these distributions is also underlined. 
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1. INTRODUCTION 

 

In reliability theory, an important notion is the lifetime, i. e. a random variable rv 

which represents the running of a system until it fails. Let us denote L, a lifetime random 

variable which has the cummulative distribution function (cdf ), )()( xLPxF   and 

the corresponding probability density function  (pdf ), )()( xFxf  , assuming that 

the cdf is a continous (i.e. it is derivable). The danger of system to fail is given by the 

failure rate r(x) defined as [7] 
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where )(xF  is the survival probability or reliability function. The failure rate could be 

increasing i.e. the distribution of L is IFR (increasing failure rate) or is DFR (decreasing 

failure rate). As many real systems become fatigue in time, then many of reliability 

systems are IFR. (While, for instance, from reliability point of view, the lifetime of a 

computer program is DFR!, (see [7]). Examples of IFR (as well as DFR) cdf's are [7] the 

exponential distribution Exp(), of parameter ;  > 0; or a Weibull(0;; υ); >0; υ>1 

distribution, while when 0<υ<1, this distribution is DFR. Note that for any lifetime, the 

pdf f(x), as well as cdf F(x) is zero for 0x : Therefore, in the formulae like this, in the 

following we will specify the pdf f(x) and the cdf F(x), only for x>0. 

Some time, complex reliability systems have a behavior which assumes at the 

beginning of their life an increasing failure rate and later on, a decreasing failure rate. In 

this situation are (see [7]) the lognormal distribution LN(;), >0; >0 and the 

Gamma(0;;υ), >0; υ>1 distribution, which has the pdf 



On a Particular Lifetime Distribution 

 

6 




 



0

11 ,0,
)(

)( dxexwherexexxf xx 






           (2) 

Now, we assume the following situation inspired by [3,6]: the system was produced in 

a country (or in a climate) and it was stated that the lifetime L has a Gamma(0;;υ), >0; 

υ>1 distribution. If the system is running (or used) in other conditions (i.e in another 

climate), then it is assumed that the initial life time distribution is altered, becoming L
*
; 

such that this distribution becomes Gamma(0;;υ), where  is a random variable 

Exp(): The problem is to determine the pdf of L
* 

 which is a mixture or a composition 

from Gamma(;υ) with respect to Exp() distribution of : (Note. In [2,3,6], L
*
 is a 

mixture between Exp() and Gamma(0;;υ) of  which is a Loomax distribution). 

 

2. THE PROBABILITY DISTRIBUTION OF L
* 

 

Let us calculate the pdf of L* as the mixture of a Gamma(0;;υ) distribution with 

the Exp() distribution of : Using the pdf of , then the pdf of the mixture is 
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After some calculations we obtain 
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or if we denote 



   the final form is 
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The cdf of L
*
 is calculated as follows 
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which is an integral of a bimome type, i.e. 
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s

p
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1





 p=-υ-1, s=-1: According to 

Tchebycheff's conditions [1], this integral is calculated by using the transform 
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By simple calculations it results that 
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The moment of order k is calculated as follows 
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This is again a binome integral where 
s

p
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 , s=is an integer,  

1,1  kmn  . According to mentioned Tchebytcheff's conditions [1], the integral 

can be also calculated by using transform xzeixz s    1..,1 1 . 

Therefore a k-st iteration (with respect to k ) of the integral 
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using the specified transform, gives 
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For k = 1 one obtain 
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For k = 2 one obtain 
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Now the variance  *2 LVar is calculated as 
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which is finally 
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In simulating reliability models which involve this distribution, it is interesting to built 

up algorithms (see [5,8]) for simulating it, i.e. algorithms for producing sampling values 

of 

 

*L . 

 

3. SIMULATION OF THE DISTRIBUTION 

 

Such an algorithm is designed to produce a sampling value of *L  and when repeating 

it n times, to obtain a sample *

1L  , 
*

2L  , … , 
*

nL  . 

In the following, we present simulation methods for *L . 

3.1 The inverse method 

The Chintchin's lemma says (see [5,8]): 

Lemma. If a random variable X has the cdf F(x) and U is a rv uniformly distributed 

over (0; 1), then the cdf of )(1 UF  is F(x): (Note that equivalent relation )(1 XFU  is 

valid). 

Note that each computer (i.e. any language) has an algorithm (generator) to produce 

(when is called), an uniform random number U, and, when calling it next time, it 

produces another uniform random number U. 

(In other words, successive calls of the generator, produce a sequence of U′s 

independent and uniformly distributed). Note also (see [5,8]) that if in an algorithm 

appears operation 1-U, we can use instead U, because when U is a random number, 1-U is 

also a random number. 

From the Lemma it results that in other words, to simulate a sampling value of X; the 

following algorithm is derived: 

Alhorithm 1. 

begin 

-Simulate a random number U uniformly distributed over (0, 1); 

-Take )(1 UFX  ; 

end 

Therefore, the algorithm applied to *L  is: 

The inverse algorithm for simulatin 
*L  

- Simulate an uniform random number U; 

- Calculate 





 1

1

1*

1

1
)(

U

U
UFL



   

Note that if U is close to 1 (which might happen!), the algorithm fails, therefore we 

must reject a value of U for which 

1

1 U  is close to the zero of the computer involved 

and use the next random number U: 

To simplify the writing, in the following when we use the U, it is assumed that it is a 

random number uniformly distributed over (0, 1): 

For simulating 
*L  we will use also the acceptance-rejection method which will be 

called in the following the rejection method (see [5,6,8]). 
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3.2 The rejection method 

This method assumes [4,5,8] that we can simulate some simpler random variables S1, 

S2; ::: until they satisfy some condition; the required random variable X is calculated in 

terms of random variables NiSi , which satisfy the condition. 

There are several theorems which lead to rejection methods. We will use the following 

two theorems. 

Theorem 1 [4,5,8,9]. Assume that random variable X to be simulated, has a pdf 

Dxxf  ,0)( D and there is another random variable Y with pdf 

RDxxf  ,0)(  which can be simulated, such as   const
xh

xf
Dx   ,

)(

)(
, . 

If U is uniform (0; 1) stochasticaly independent from Y , and they satisfy the condition 

)(

)(

xh

xf
U


  ,                            (8) 

then Y has the pdf f(x): 

 

Therefore the algorithm for simulating X is: 

Algorithm 2. 

repeat 

- generate U uniform (0; 1); 

- generate Y having pdf h(x) 

until 
)(

)(
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xf
U


  

Take X = Y: 

 

The performance of the algorithm is given by the accepting probability 
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therefore it is necessary that 1 . (The value of ap  results from the proof of the 

theorem). The algorithm is fast if 1ap , is close to 1. 

A rejection algorithm based on this theorem for simulating *L  is obtained if we take 

as enveloping pdf  
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which makes sense if 11  . The cdf 
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and therefore the rejection algorithm is obvious. 

 

The above theorem is also called the enveloping theorem because the main assumption 

of the theorem says that )()( xhxf  , i.e. there is a   such as the graph of f(x) is 

enveloped by the graph of Dxxh ,)( . 

Theorem 2 [4,5,8]. Assume that the pdf f(x) of the r.v. X to be simulated is in the form 

 )(1)()( xQxrcxf                 (9) 

where c = const,  r(x) is the pdf of a random variable Y and Q(x) is the cdf of a r.v. Z: 

Then, the rv Y, satisfying condition YZ   with Z and Y independent random variables, 

has the pdf f(x): 

Hence the theorem says that the sampling value X is the accepted Y. 

The resulting rejection algorithm is 

 

Algorithm 3. 

repeat 

- simulate Z; 

- simulate Y independent of Z; 

until YZ   ; 

Take X = Y. 

The performance of the algorithm is given by 

 
c

YZpa

1
Prob   

hence it is necessary that c>1. (The value ap  results from the proof of the theorem). 

There is another form (a kind of dual of the theorem 2), let us call it 

Theorem 2' in which the pdf is in the form 

)()()( xQxrcxf                  (9′) 

and the condition becomes YZ  . 

Therefore the algorithm deriving from Theorem 2' is 

Algorithm 3' 

repeat 

- simulate Z; 

- simulate Y independent from Z; 

until YZ  ; 

Take X = Y. 

We apply this theorem in the form (9') , i.e. 
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and 


1
ap  (i.e 1 is required). The algorithm is obvious and random variables Z and Y 

are simulated by the inverse method according to formulae 

U

U
Y
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Z

q

q 





11

,

1

1
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1


. 

The accepting probability is 


1
ap  which works if 1 , but not very large. 

Finally, we note that for simulating *L  the algoritnms 1 and 2 are prefered. (They are 

faster!). 

 

4. AN APPLICATION TO RELIABILITY 

 

Assume that a system consists in n components having the lifetimes *

1L  , 
*

2L  , … , 
*

nL  

n independent and identicaly distributed. In reliability is interesting to consider 

random variables 
*
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(The lifetime V is applied when all components fail and the lifetime W is applied when all 

components run). It is obvious that cdf's of these rv's are respectively 
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Simulation of V and W can be done using directly formula (10) (i.e. calculating min 

and max of the simulated sample *

1L  , 
*

2L  , … , 
*

nL ). 

Taking into consideration formulae (11'),(11") and theorems 1 and 2, the following 

concluding theorem is valid 

Theorem 3. The simulation of V and W can be done by using theorem 1 with 

enveloping density f
*
(x) or using theorems 2 and 2', noticing that pdf 's )(,)( ** xfxf wv   

are in the forms (9) or (9') taking into account froms (11"). 

The proof is obvious, existing 0  (in theorem 1), r(x) is f
*
 (x) (from (11') or (11")) 
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4.1. The case when n random  

In some practical situations, the number of components of the system is a random 

variable, say 0, ** NN  [10]. Possible discrete distributions [10] are Poisson(); >0, 

or Geometric(p); 0<p<1; and these distributions are truncated on  ,1 . 
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 In this case the distribution of *L  is called [10] target distribution. (In [10] there are 

used target distributions Weibull and Loomax). Here we will consider also the new case 

when *N is Binomial(n; p); Nn , <p<1. 

Distributions of V and W when *N is Geometric(p). The frequency of Geometric(p) 

distribution, truncated on  ,1 is 
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                                                                                        (12) 

The cdf of V is the mixture 
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The rv V from (10) can be simulated by the inverse method (based on the inverse 

)(1 Uv
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 of (14)). 

Using the truncated distribution (12), the cdf of W is 
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The rv W can be simulated also by the inverse method (use the inverse )(1 Uw

  of 

(15)). 

 

Distributions of V and W when N_ is Poisson() . 

The truncated Poisson() distribution is 

 1,
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The cdf of V is the mixture 
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which finaly is 
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Therefore, the rv V can be simulated by the inverse method. 

The cdf of W is the mixture 
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In this case, the rv W is also easy simulated by the inverse method. 

Simulation of V and W when N_ is Binomial(n; p). 

The truncated Binomial(n; p), 0<p<1 , distribution for nkkN ...,,2,1,*   has the 

frequency function 
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The mixture cdf of V in this case is 
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which finaly gives 
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The mixture of W with truncated Binomial(n; p) is 
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which finaly gives 
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(21) 

Since cdf's (20) and (21) can be easily inversed, the inverse method for simulating V 

and W can be applied. Finally, note that the hypothesis that N_ is binomial is more 

realistic for a sistem with n components (n= fixed), which might have only  components 

runing (1<<n) at a given time. 
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