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Abstract: In this paper we introduce a new generalization of the Lindley distribution which 

generalizes the power Lindley distribution, proposed by Ghitany, and another form of generalized 
Lindley proposed by Nadarajah. This new kind of generalized Lindley distribution has four 

parameters and it allows more adaptability to analyze real lifetime data. 
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1. INTRODUCTION 

 

In this paper, we deal with a generalization of Lindley distribution because it forms a 

flexible family of distributions with an important selection of shape and hazard functions. 

The Lindley distribution was firstly proposed by Lindley (1958) in the context of 

Bayesian statistics, based on Bayes theorem [1], [2] as a counterexample of fiducial 

statistics. Mixing various distributions lead to the expansion of known families of 

distributions. In literature, there were introduced and studied some mixed data modeling 

distributions of life as Weibull Poisson, Weibull geometric, Exponential geometric. 

Lindley distribution is a one-parameter distribution, given by its probability density 

function  
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The cumulative distribution function corresponding to (1) is 
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The properties of the Lindley distribution were studied by M.E. Ghitany, B. Atieh, S. 

Nadarajah [4, 5, 6]. They discussed its applications to survival data and, also, showed in a 

numerical example that the Lindley distribution gives better modeling for waiting times 

and survival time data than the exponential distribution. Different forms of generalized 

Lindley distributions were been widely applied for reliability modeling and life testing 

data [10, 11]. There is a great development of another various quantitative techniques for 

solving optimization problems for biological and economical domains [8, 9]. 
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Definition 1.1 Let X be a random variable and the parameters , 0   . We say that X 

has a quasi Lindley distribution  ,~ QLX  if it has the probability density function 
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and the cumulative distribution function 

 
 

 

 

Because the Lindley distribution (having only one parameter) does not provide 

enough flexibility for analyzing different types of lifetime data, in statistic literature it 

were introduced some new compounding the Lindley distribution with Negative Binomial 

distribution [3], with Poisson distribution [4] or Exponential Poisson [7] offering some 

new distributions of lifetime case obtaining from Generalized Lindley distribution 

compounding with exponential and gamma distributions. The quasi Lindley distribution 

reduces of the one following known distribution: 

 

1. For 1  , it becomes  Lindley    

2.  For 0  , it becomes  2,Gamma   

3. For   , it becomes  Exp   

 

The quasi Lindley distribution maybe can write as a two-component mixture of 

 Exp   and  2,Gamma  : 
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Ghitany et al. proposed the power transformation,
1/ , 0Y X    , for Lindley 

distribution for generating a flexible family of probability distributions. The new 

parameter would offer more distributional flexibility with a form of the hazard rate what 

can be decreasing, unimodal and decreasing-increasing-decreasing for some particular 

cases of the parameters. 

 

Definition 1.2 Let X be a random variable and the parameters , , 0    . We say 

that X has a quasi-power Lindley distribution  bQPLX ,,,~   if it has the probability 

density function 
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and the cumulative distribution function 
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The quasi power Lindley distribution may be can write as a two-component mixture 

of  ,Weibull   and  2, ,Gamma   : 
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1,
1

yp f y y e
 




  


 and   2 2 1

2

yf y y e
     . 

We introduce a new four parameter distribution, denoted  

  0,,,,,,,~ bbEQPLX   

referred to as the exponentiated quasi power Lindley. This new distribution reduces to the 

quasi Lindley distribution, the exponential distribution and gamma distribution. On terms 

of reliability, the various shapes of the EQPL distribution give it an advantage, being 

more suitable to model many real systems which generally exhibit bath-tub shaped failure 

rate. 

 

Definition 1.3 Let  bEQPLX ,,,~  . The cumulative function of the 

 , , , ,EQPL b    , , , 0b     is 
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and the corresponding probability density is given by 
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The EQPL distribution reduces of the one following known distribution: 

1. For b=1, it becomes  , ,QPL     
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2. For 1  , it becomes PowerLindley  , , b   
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The cdf of X can also be represented in an extended form 
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Definition 1.4 The corresponding hazard rate function is 
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2. STOCHASTIC ORDER 

Let  11111 ,,,~ bEQPLX   and  22222 ,,,~ bEQPLX   be two exponentiated 

quasi power Lindley random variables with common shape  . Let F1 denote the 

cumulative distribution function of 1X  and 2F  the cumulative distribution function for 2X . 

 

Defnition 2.1 We say that 1X
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Definition 2.3 We say 1X  is stochastically greater than 2X  with respect to reverse 
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For establishing stochastic order we have the following important results due to 

Shaked and Shantikumar 
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The EQPL distribution is ordered with respect to the strongest one as shown in the 

following theorem. 
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Also, we have 
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Theorem 2.4 If we have 1 2 1 2,      and 1 2  then 2X  is stochastically greater 

with respect to likelihood ratio than 1X  if and only if 1 2b b . 

Theorem 2.5 If we have 1 2 1 2, 1b b b      and 1 2  then 2X  is stochastically 

greater with respect to likelihood ratio than 1X  if and only if 2 1  . 

Theorem 2.6 If we have 1 2 1 2, 1b b b      and 1 2 
 
then 2X  is stochastically 

greater with respect to likelihood ratio than 1X  if and only if 2 1  . 

 

3. MOMENTS 

We will obtain the moments of the EQPL distribution using the binomial series 

expansion. 

Theorem 3.1 The rth moment of the exponentiated quasi power Lindley  rE X  is 
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Using the binomial series expansion of 
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We obtain the rth moment of X and we find 
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So, the rth moment can be rewritten 
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Theorem 3.2 The moment generating function of the exponentiated quasi power 

Lindley  XM t  is given by 
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Proof.    
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Using the binomial series expansion like in the last theorem, we introduce the last two 

expansions in the moment generating function of X and we find 

   
2 2

1 11 2 1

, ,
0 0

( ) .
1 1

i x i xk tx k tx

X i k i k

b b
M t C x e e dx C x e e dx

      

 

        
  

 

Let consider 

0
.

!

j j
tx t x

e
j






 

So, the moment generating function can be rewritten 

   
2 2

1 11 2 1

, ,0 0 0
( ) ( ) .

! 1 1

j
i x i xk tx k tx

X i k i k

t b b
M t C x e e dx C x e e dx

j

      

 

        


 

 
  

 
Let y x  

 

 

The moment generating function has the last form 
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4. GENERATION ALGORITHMS 

We consider simulating values of a random variable  bEQPLX ,,,~   

Algorithm 1 

1. Generate   niUUi ,1,1,0~   

2. Set     
1/

1/1 1
1 1 exp 1 ,  1, .b

i iX W U i n 
 



              
 

 

Algorithm 2 
 

1. Generate   niUUi ,1,1,0~   

2. Generate   nilExponentiaVi ,1,0~   

3. Generate    niGi ,1,0,2~   

4. If 
1/ 1/ 1/, ,  then set  otherwise , 1,  .

1
i i i i iU p p X V X G i n





      
  

 

 

Simulation study 

n=10 

theta=seq(0,4,length=10) 

beta=seq(0,4,length=10) 

alpha=seq(0,4,length=10) 

u=runif(n) 

v=rexp(theta) 

g=rgamma(2*beta,theta) 

p=(alpha*theta)/(alpha*theta+1) 

if (u^(1/b)<p) 

{x=v^(1/b)} 

else {x=g^(1/b) 

x 

[1] 0.86096886 0.02832007 0.89052860 0.16637737 0.27854706 0.78316390 

[7] 0.30347644 0.42973307 0.21931648 0.76245404  
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