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1. INTRODUCTION 

 

For some time, the stochastic approximation has become a subject of interest for many 

researchers in different fundamental and applied fields. There are two famous algorithms 

wich are very often utilized in the research of stochastic approximations (among other  

algorithms): the Robbins-Monro algorithm ([5], [6]) and the Kiefer-Wolfowitz algorithm 

([4]). A short time after these stochastic approximation algorithms appeared, A. 

Dvoretzky ([3]) discovered an approximation algorithm wich generalizesthe two 

previously mentioned algorithms. As a result of the particular interest generated by this 

new algorithm, many researchers have started studying it.       Two of these researchers 

are worth mentioning: Derman and Sacks ([2]), who found a demonstration (based on a 

technical lemma) wich is shorter and easier than that Dvoretzky’s initial theorem, wich 

has a rather lengthy and more difficult to apprehend demonstration.  This presentation 

contains a generalization of Dvoretzky’s initial theorem  realized by means of a 

generalization (among many others) of Derman and Sacks’s lemma. Firstly, we will 

provide Dvoretzky’s initial theorem without its demonstration and Derman and Sacks’s 

lemma for a better understanding of the starting point of this research.   

Dvoretzky’s Theorem ([3], pp. 39-55)  

Consider a probability space  ( , K ,P). 

Let be ( n ) *Nn
,( n ) *Nn

,( n ) *Nn
such that  n >0,  n  0,  n  0,  

 nN*,  n  
n

0, 


1n

 n <+  ,


1n

 n =+  . Let be   a real number and   

(T n ) *Nn
 a sequence of real and measurable functions wich satisfies: 

|T n ( r 1 ,r 2 ,…, r n )- |max{ n ; (1+  n )|r n  -  |- n },  n(N*-{1}) for every 

real numbers r 1 ,r 2 ,…, r n .  

Let be the sequences of random variables:  (X n ) *Nn
, (Y n ) *Nn

,such that 

X 1n ( ) =T n ( X1 ( ),X 2 ( )…, X n ( ))+Y n ( )  (a.s.),    ,  

 n(N*-{1}). 
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Suppose that the following conditions hold: 

E[Y1
2 ]<+  , 



1n

E[Y n

2 ]<+  , and E[Y n | X 1 ,X 2 ,…, X n ]=0 (a.s.),  nN*. In 

the conditons above there exist: 

E[(X n -  )
2
 ]  

n
0  with the probability one, and    

X n  
n

  with the probabilty one.  

 

Lema (Derman şi Sacks)([2]) 

Let be ( na ) *Nn
, ( nb ) *Nn

, ( nc ) *Nn
, ( n ) *Nn

, ( nx ) *Nn
,sequences of real numbers    

wich satisfy the following conditions: 

( na ) *Nn
,( nb ) *Nn

, ( nc ) *Nn
,( nx ) *Nn

 [0,+ ), 
n

lim ( na )=0;


1n

nb <+ ; 




1n

nc =+ ;


1n

n <+  şi  0N N*, such that for every n> 0N  we have:  

1nx max{ na ;(1+ nb ) nx + n - nc }. Hence  
n

lim ( nx )=0. 

 

2. THE MAIN RESULT 

 

Before we provide the generalization of Dvoretzky’s theorem, we wil offer a series of 

helping lemmas, some of wich are generalization of Derman and Sack’s lemma.  

 

Lemma 1. 

Let be the sequences of real number: (a n ) *Nn
, (b n ) *Nn

, (c n ) *Nn
,(d n ) *Nn

,  

(e n ) *Nn  
( n ) *Nn

,(x n ) *Nn
, such that we have:  

0 x 2n max{a 1n ; (1+b 1n )x 1n +e n x n +d n }, nN*,         (1) 

a n , b n , c n , e n  ,x n  0, n , a n  1,  nN*,         (2) 

a n 0, 


1n

b n <+  ,


1n

e n <+  , 


1n

c n =+  , 


1n

 n <+  , and  

d n = n - c n ,  nN*, d n R,  (3)           

| n |  c n ,  nN*, x1 ,x 2 R, such that (x 2  1 or x1  1),  (4)         

note that: K=max{ x 1 ,x 2  },  (5) 

suppose that the following conditions holds: b n +e 1n 
K

dn 1
,  

 n(N*-{1}). 

 (6) 

Hence  (x n ) *Nn
 isbounded  and  0 x n K. 

PROOF: From (3) and (4) it result that  d n = n - c n  | n |- c n  0, so we have: 

d n  0,  nN* (7) 

From (5) it result  K 1 (8) 

For  n=1 from (1) we obtain: 

0 x 3 max{a 2 ;(1+b 2 )x 2 +e 1 x 1 +d 1 }, (9) 

We have the inequality : 

(1+b 2 )x 2 +e 1 x 1 +d 1  (1+b 2 )K+e 1 K+d 1 K(1+b 2 +e 1 +
K

d1 )                                   
(10) 
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For  n=2 from (6) we obtain: b 2 +e 1 +
K

d1  0 and from (10) we have:   

(1+b 2 )x 2 +e 1 x 1 +d 1 K.  (11) 

From  (2), (8), (9) and (11) it result: 0 x 3 max{a 2 ; K}=K, so we have: 

0 x 3 K  (12) 

By induction we have: 

(1+b 1n )x 1n +e n x n +d n K(1+b 1n +e n +
K

d n ), nN*, 
 (13) 

in (6) we replace  n with (n+1) and we obtain: 

b 1n +e n +
K

d n  0 and from (13) it result:  (1+b 1n )x 1n +e n x n +d n   K, and from    

(1) and (2) we obtain: 

0 x 2n max{a 1n ; K}=K, so  0 x n K,  nN*, so 

(x n ) *Nn
is bounded  and  0 x n K (q.e.d.). 

 

Lemma 2. 

Let be the sequences (a n ) *Nn
, (b n ) *Nn

, (c n ) *Nn
,(d n ) *Nn

, (e n ) *Nn
,( n ) *Nn

  

and  (x n ) *Nn
, such that we have: 

0 x 2n max{a 1n ;(1+b 1n )x 1n +e n x n +d n }, nN*,    (1) 

a n , b n , c n , e n  ,x n  0,  n , a n  1,  nN*,    (2) 

a n 0,


1n

b n <+  ,


1n

e n <+  ,


1n

c n =+ ,


1n

 n <+  ,                       
   (3) 

d n = n -c n , nN*, d n R,                                                                                                (4) 

| n | c n , nN*,    (5) 

x 1 ,x 2 R, such that (x 2  1 or x1  1), and we note that: 

K=max{x 1 ,x 2 },                                                                                                         (6) 

Suppose that the following holds: b n +e 1n 
K

dn 1
, n(N*-{1}). 

   (7) 

Hence  x n  
n

0.       

PROOF: From the previous lemma, (lemma 1.) we have that the sequence 

(x n ) *Nn
 is bounded and 

0 x n K and from (1) we have:  

0 x 2n max{a 1n ; (1+b 1n )x 1n +e n K+d n }, nN*,    (8) 

Note that:   

e n K+d n = d
~

n     (9) 

so we have   0 x 2n max{a 1n ; (1+b 1n )x 1n + d
~

n }, nN*, and from (4) we  

have: 

with  d
~

n = e n K+ n - c n ,  nN*,  (10) 

Facem acum altă notaţie:     

e n K+ n = 
~

n   (11) 
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Using these notes  (10) becomes: 

0 x 2n max{a 1n ;(1+b 1n )x 1n +
~

n - c n }, nN*, with d
~

n =
~

n - c n ,  

 nN* 

(12) 

and from (3) it result:    




1n


~

n =


1n

 (e n K+ n )=K


1n

 e n -


1n

 n <+  , 
   (13) 

 

At this stage all the hypotheses of Derman and Sacks’s lemma ([2], pp. 602) or of 

lemma 1. in this paper, so  x n 0 (q.e.d.). 

 

Lemma 3. 

Let be the real sequences (a n ) *Nn
, (b n ) *Nn

, (c n ) *Nn
, (d n ) *Nn

,(e n ) *Nn
, 

( n ) *Nn
(x n ) *Nn

, such that we have: 

0 x 2n max{a 1n ; (1+b 1n )x 1n +e n x n +d n }, nN*,    (1) 

a n , b n , c n , e n  , x n  0,  n , a n  1,  nN*,    (2) 

a n 0, 


1n

b n <+  , 


1n

e n <+  , 


1n

c n =+  , 


1n

 n <+  ,                        
   (3) 

d n = n - c n ,  nN*, d n R,    (4) 

(x n ) *Nn
is bounded, 0 x n K,  nN*.    (5) 

 Hence  x n  
n

0. 

PROOF: From (1) and  (5) we have: 0  x 2n max{a 1n ; (1+b 1n )x 1n +e n K+d n }, 

 nN*,  

Note that:  e n K+d n = d
~

n                                                                                          (6) 

so we have  0 x 2n max{a 1n ; (1+b 1n )x 1n + d
~

n}, nN*,  

with  d
~

n = e n K+ n - c n ,  nN*,     (7) 

we add another note:    e n K+ n = 
~

n                                                                 (8) 

Using these notes (7) becomes: 

0 x 2n max{a 1n ; (1+b 1n )x 1n +
~

n - c n }, nN*,    (9) 

with d
~

n =
~

n - c n ,  nN*, in wich, from  (3) results that:    




1n


~

n =


1n

 (e n K+ n )=K


1n

 e n -


1n

 n <+  . 

At this stage all hypotheses of Derman and Sack’s lemma hold ([2], pag. 602), 

so  x n 0 (q.e.d.).  

 

Lemma 4. 

Let be the real sequences (a n ) *Nn
, (b n ) *Nn

, (c n ) *Nn
, (d n ) *Nn

,(e n ) *Nn
, 

( n ) *Nn
 and (x n ) *Nn

, such that we have (for a chosen and fixed K): 

1) (x n ) *Nn
is bounded, 0 x n K,  nN*, K>0, 

2) 0 x 2n min{ max{a 1n ; (1+b 1n )x 1n +e n x n +d n };K},  nN*, 

3) a n , b n , c n , e n  , x n  0,  n , a n  1,  nN*, 



Review of the Air Force Academy                                                                  No.2 (34)/2017 

 

101 

4) a n 0, 


1n

b n <+  , 


1n

e n <+  , 


1n

c n =+  , 


1n

 n <+  ,                             

5) d n = n - c n ,  nN*, d n R. 

Hence  x n  
n

0. 

PROOF: See lemma 3. 

 

We now provide the main result of this presentation, result wich is a generalization of 

one of Dvoretzky’s stochastic approximation theorem.  

 

Theorem 

Let be sequences (X n ) *Nn
,(T n ) *Nn

,(Y n ) *Nn
, such that the following conditions 

hold : X n , Y n  are random variables on a probability space  ( , K ,P), 

and  X i  are random variables, i{1,2}, and T n :R n R, X1 ,X 2  are measurables 

applications such that (X1  or X 2 ) 1 (a.s.), and the following conditions hold: 

X 1n = T n ( X 1 ,X 2 ,…, X n )+ Y n  (a.s.)      (1) 

E[Y n | X 1 ,X 2 ,…, X n ]=0 (a.s.),  nN*,      (2) 




1n

E[Y n

2 ]<+  , 
     (3) 

|T n ( x1 ,x 2 ,…, x n )|max{ n ; (1+  n )|x n |+e 1n |x 1n |- n },  

 n(N*-{1}). 

     (4)                        

Let be the sequences  ( n ) *Nn
,( n ) *Nn

,( n ) *Nn
, (e n ) *Nn

, such that: 

 n  
n

0, 


1n

 n <+  , 


1n

e n <+  ,


1n

 n =+  , and  

 n >0,  n  0,  n  0, e n  0,  nN*,   n  1,      (5) 

| Y n |  n  (a.s.). Note that K=max{ X 1 ,X 2 },                                                          (6) 

and suppose that: 

 n + e n 
K

1
 (|Y 1n |-  n )  (a.s.),  n(N*-{1}. 

     (7) 

So we have:   

a)(X n ) *Nn
is bounded (a.s.), | X n |K, (a.s.) n(N*-{1} and 

b)X n  
n

0 (a.s.). 

PROOF: 

As in the demonstration of theorem 1. from ([2], pp. 603), we suppose that: 




1n
2

1

n
E[Y n

2 ]<+     
        (8) 

We define the random variables: 

Z n =sign(T n ( X 1 ,X 2 ,…, X n )) Y n  

Hence for  Z n  (2), (3) and  (4) hold. 

But from  (2) and  (3) we have (as in  [2], pp. 603): 




1n

Z n =convergent  (a.s.) and  | Z n |=| Y n |   
  (9) 
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From  (8), the Cebisev inequality and the  Borell-Cantelli lemma  we have: 

| Z n |  n   (a.s.)                                                                                                    (10) 

But from  (1) and  (10) we have: 

|X 1n | 2 n , dacă |T n |  n and |X 1n |=|T n |+ Z n , if  |T n |> n                      (11) 

So we have (a.s.): 

0 |X 1n |max{2 n ;|T n |+Z n }  

max{2 n ;(1+  n )|X n |+e 1n |X 1n   
|+Z n - n } 

    

(12) 

If we note: 

|X n |=x n , a n =2 n , b n = n , c n = n ,  n =Z n , d n = n - c n ,   

then all the conditions from the hypoteses in lemma 1. hold, we have:  

(|X n |) *Nn
 is bounded and  

| X n |K,  nN*                                                                                                 (13) 

But from  (12) and (13) we have: 

0 |X 1n |max{2 n ; (1+  n )|X n |+e 1n K+ Z n - n }= 

= max{2 n ; (1+  n )|X n |+(e 1n K+ Z n )- n }                                                  

   (14) 

But 


2n

 (e 1n K+ Z n )=K


2n

 e 1n +


2n

 Z n <+  (see. (9)).                                     

If we note: 

a n =2 n , b n =  n , c n = n ,  n =Ke n + Z n , x n =| X n |                                   (15) 

then, using the notes from (15) it results that all the conditions from the hypotheses in 

lemma 2. (or in lemma 1 of  Derman and Sacks from [2], pp. 602), so we have: 

x n  
n

0, that is | X n |  
n

0 (a.s.), so  X n  
n

0 (a.s.) (q.e.d.).  
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