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1. INTRODUCTION 

 

Consider X  a non-negative absolutely continuous random variable with the 

probability density function (PDF) )(xf , the cumulative distribution function (CDF) 

)(=)( xXPxF  , and the reliability function (RF) )>(=)( xXPxF . 

Let )[0,t  and w  a real nonnegative measurable function defined on ).[0,  

Let )}(<)(,<0|),{(= 212121 tFtFttttD  . 

For any given pair Dtt ),( 21 , the conditional random variable )( 21 tXtX   has 

the PDF ),;( 21 ttxf , the CDF ),;( 21 ttxF  and the RF ),;( 21 ttxF  given by  
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(1) 

 

The Shannon entropy proposed by Shannon [45] (1948) is defined as  

.)(ln)(=)(
0

dxxfxfXH 


  (2) 

Remark 1.1 In all definition from this paper we assume that the integrals exist, and 

we use the notational convention 0=0ln0  and 0=0/0 .  

 The concept of entropy was proposed as a measure of the amount of information 

supplied by a random variable X  or a probabilistic experiment. It has numerous 

extensions to other entropy-type measures, some of these will be presented below. 
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In the next sections we present the residual and past entropy-types measures based on 

CDF and RF, the cumulative entropies, the cumulative relative entropies and inaccuracy 

measures. 

 

2. WEIGHTED, RESIDUAL AND PAST ENTROPIES 

 

The weighted entropy, referred by Di Crescenzo and Longobardi [9] (2006) in 

agreement with Beli s  and Guia s u [4] (1968), is defined as  

.)(ln)()(=)(
0

dxxfxfxwXHw 


  (3) 

The residual entropy (RE) proposed by Ebrahimi and Pellerey [13] (1996) is defined 

as  

dxtxftxftXRE
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The past entropy (PE) proposed by Di Crescenzo and Longobardi [7] (2002) is 

defined as  
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The weighted residual entropy (WRE) proposed by Di Crescenzo and Longobardi 

[9] (2006) is defined as  

dxtxftxfxtXWRE
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The weighted past entropy (WPE) proposed by Di Crescenzo and Longobardi [9] 

(2006) is defined as  

dxtxftxfxtXWPE
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These weighted entropies are suitable to describe dynamic information of random 

lifetimes, in analogy with the entropies of residual and past lifetimes introduced in [13] 

and [7], respectively. 

 

3. CUMULATIVE ENTROPIES 

 

The cumulative residual entropy (CRE) proposed by Rao, Chen, Vemuri, Wang 

[41] (2004) is defined as 

.)(ln)(=)(
0

dxxFxFXCRE 


  (8) 

The CRE is an alternative measure of uncertainty in the random variable X  that 

enjoys many of the properties of Shannon entropy and has some advantages such us is 

always non-negative, can be easily computed from sample data and these computations 

asymptotically converge to the true values.  



Review of the Air Force Academy                                                                  No.2 (34)/2017 

 

105 

Like as the Shannon entropy the CRE can be used to construct probability 

distributions by applying the Maximum Entropy Principle introduced in 1957 by Jaynes 

[18, 19]. For example, Rao [42] (2005) obtains a general result for characterization of 

MAX-CRE distributions and applies this result to construct the uniform distribution and 

the Weibull distribution. 

Drissi, Chonavel and Boucher [12] (2008) generalize the definition of CRE to the case 

of random variables with supports that are not restricted to positive values. 

The dynamic cumulative residual entropy (DCRE) proposed by Asadi and 

Zohrevand [2] (2007) is defined as  
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 The DCRE is a measure of the information in the residual life distribution. The 

authors show that the CRE and the DCRE is connected with some well-known reliability 

measures such as the mean residual lifetime and the hazard rate. Also, they prove that if 

the );( tXDCRE  is an non-decreasing function on t  then it characterizes the underlying 

distribution function uniquely. 

The cumulative past entropy (CPE) proposed by Di Crescenzo and Longobardi [10] 

(2009) is defined as  

.)(ln)(=)(
0

dxxFxFXCPE 


  (10) 

The CPE is also non-negative and it is useful to measure information on the inactivity 

time of a system, being appropriate for the systems whose uncertainty is related to the 

past. 

The dynamic cumulative past entropy (DCPE) proposed by Di Crescenzo and 

Longobardi [10] (2009) and by Navarro, Del Aguila and Asadi [37] (2010) is defined as  
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The interval entropy (IH) proposed by Sunoj, Sankaran and Maya [47] (2009) is 

defined as  

dxttxfttxfttXIH
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The weighted cumulative residual entropies (WCRE) proposed by Misagh, Panahi, 

Yari, Shahi [33] (2011) is defined as  

.)(ln)(=)(
0

dxxFxFxXWCRE 


  (13) 

The weighted cumulative past entropies (WCPE) proposed by Misagh, Panahi, 

Yari, Shahi [33] (2011) is defined as  

.)(ln)(=)(
0

dxxFxFxXWCPE 


  (14) 
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The authors present various properties of this measure, including its connection with 

weighted residual and past entropies and obtain some upper and lower bounds. 

The interval cumulative residual entropies (ICRE) proposed by Khorashadizadeh, 

Rezaei Roknabadi and Mohtashami Borzadaran [25] (2013) is defined as  

dxttxFttxFttXICRE
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The interval cumulative past entropies (ICPE) proposed by Khorashadizadeh, 

Rezaei Roknabadi and Mohtashami Borzadaran [25] (2013) is defined as  

dxttxFttxFttXICPE
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The authors present some properties and characterization of this measures, including 

its connections with doubly truncated Shannon entropy and mean residual life. 

The weighted cumulative residual entropies (WCRE) proposed by Suhov and 

Yasaei Sekeh [46] (2015) is defined as  

.)(ln)()(=)(
0

dxxFxFxwXWCREw 


  (17) 

The weighted cumulative past entropies (WCPE) proposed by Suhov and Yasaei 

Sekeh [46] (2015) is defined as  

.)(ln)()(=)(
0

dxxFxFxwXWCPEw 


  (18) 

The interval weighted cumulative residual entropy (IWCRE) of the random 

variable X  at interval ],[ 21 tt  with the weight function w  is defined by Sekeh, Borzadran 

and Roknabadi ([51]) (2015)  
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The interval weighted cumulative (past) entropy (IWCE) of the random variable 

X  at interval ],[ 21 tt  with the weight function w  is defined by Sekeh, Borzadran and 

Roknabadi ([51]) (2015)  
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Review of the Air Force Academy                                                                  No.2 (34)/2017 

 

107 

4. CUMULATIVE RELATIVE ENTROPIES AND INACCURACY MEASURES 

 

Consider X  and Y  two non-negative absolutely continuous random variables with 

the probability density functions (PDFs) )(xf  and )(yg , the cumulative distribution 

functions (CDFs) )(=)( xXPxF   and )(=)( yYPyG  , and the reliability functions 

(RFs) )>(=)( xXPxF  and )>(=)( yYPyG  respectively. Let )[0,t  and 

)}(<)(),(<)(,<0|),{(= 21212121 tGtGtFtFttttD  . 

For any given pair Dtt ),( 21 , consider the conditional random variable 

)( 21 tXtX   with the PDF ),;( 21 ttxf , the CDF ),;( 21 ttxF  and the RF ),;( 21 ttxF  

defined in the first section and the conditional random variable )( 21 tYtY   has the 

PDF ),;( 21 ttyg , the CDF ),;( 21 ttyG  and the RF ),;( 21 ttyG  given by  
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(21) 

The relative entropy, Kullback-Leibler divergence, Kullback-Leibler 

discrimination information proposed by Kullback and Leibler [27] (1951) is defined as  

.
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ln)(=),(

0

dx
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

 (22) 

Developing the Shannon entropy, the authors have the idea to compare the entropy 

inside a family of probability measures, instead of considering the entropy corresponding 

to only one probability measure. 

The Kerridge measure of inaccuracy proposed by Kerridge [24] (1961) is defined as  

dxxgxfYXH )(ln)(=);(
0
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 ).(),(= XHYXD   (23) 

The weighted inaccuracy measure proposed by Taneja and Tuteja [48] (1986) is 

defined as  
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  (24) 

The residual relative entropy proposed by Ebrahimi and Kirmani, [15] (1996) is 

defined as 
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The past relative entropy proposed by Crescenzo and Longobardi, [8] (2004) is 

defined as  
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The dynamic measure of inaccuracy proposed by Taneja, Kumar and Srivastava 

[49] (2009) is defined as  

dxtxgtxftYXRI
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The weighted residual inaccuracy measure proposed by Kumar and Taneja [48] 

(2012) is defined as   
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represents the weighted residual relative entropy. 

The past inaccuracy measure (PI) proposed by Kumar and Taneja [48] (2012) is 

defined as  
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The weighted past inaccuracy measure (WPI) proposed by Kumar and Taneja [48] 

(2012) is defined as  
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represents the weighted past relative entropy. 

The cumulative residual inaccuracy (CRI) proposed by Taneja and Kumar [50] 

(2012) is defined as  

dxxGxFYXCRI )(ln)(=),(
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
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represents the cumulative residual relative entropy. 
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The dynamic cumulative residual inaccuracy (DCRI) proposed by Taneja and 

Kumar [50] (2012) (a version was also introduced by Chamany and Baratpour (2014)) is 

defined as  

dxtxGtxFtYXDCRI
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represents the dynamic cumulative residual relative entropy. 

The interval relative entropy proposed by Misagh and Yari, [35] (2012) is defined as 
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Here was proposed a measure of discrepancy between two lifetime distributions at the 

interval of time in base of Kullback-Leibler discrimination information. They studied 

various properties of this measure, including its connection with residual and past 

measures of discrepancy and interval entropy, and they obtained its upper and lower 

bounds. 

The cumulative past inaccuracy (CPI) proposed by Kumar and Taneja [29] (2015) 

is defined as  

dxxGxFYXCPI )(ln)(=),(
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represents the cumulative past relative entropy. 

The dynamic cumulative past inaccuracy (DCPI) proposed by Kumar and Taneja 

[29] (2015) (received at 15 April 2014, accepted at 12 march 2015 and was published in 

december 2015 in J.T.S.A.) and Kundu, Di Crescenzo and Longobardi [31] (2016) 

(received at 28 March 2014, accepted at 2 August 2015 and was published in 2016 in 

Metrika) is defined as  
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represents the dynamic cumulative past relative entropy. 

The interval inaccuracy measure (II) proposed by Kundu [30] (2015) is defined as  
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The weighted interval inaccuracy measure (WII) proposed by Kundu [30] (2015) is 

defined as  
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The interval cumulative residual inaccuracy (ICRI) proposed by Kundu, Di 

Crescenzo and Longobardi [30] (2016) is defined as  
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The interval cumulative past inaccuracy (ICPI) proposed by Kundu, Di Crescenzo 

and Longobardi [30] (2016) is defined as  
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CONCLUSIONS 

 

In this paper we present a review of cumulative entropies from reliability theory. First 

we present the Shannon entropy concept proposed by Shannon [45] and then we present 

the residual and past entropy-types measures based on CDF and RF, the cumulative 

entropies, the cumulative relative entropies and inaccuracy measures. 
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