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ON A PARTICULAR LIFETIME DISTRIBUTION 
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Abstract: The paper introduces a probability distribution as a mixture between a 
Gamma(0, λη, ν ) distribution and an exponential  Exp(µ) distribution of η. The first and 

second order moments are calculated, together with the variance. Algorithms for simulation of 

the introduced distribution are presented. These include the inverse method and the rejection 

method. The last section discusses an application to reliability of a system with n components, 
with stochastic independent lifetimes, namely the distributions of maximum W and minimum 

V of lifetimes, when components have the introduced distribution. Simulation of W and V is 

also presented. The last part of the paper presents distributions of V and W when the number of 
components is (truncated) random with distributions: Poisson(λ), Geometric(p), or 

Binomial(n, p), n ≥ 1. Simulation of these distributions is also underlined. 

 

Keywords: Gamma and Exponential distributions, Mixture distribution, Random variate 
simulation, Reliability. 
 
 

1. INTRODUCTION 

 

In reliability theory, an important notion is the lifetime, i. e. a random variable rv 

which represents the running of a system until it fails. Let us denote L, a lifetime random 

variable which has the cummulative distribution function (cdf ), )()( xLPxF   and 

the corresponding probability density function  (pdf ), )()( xFxf  , assuming that 

the cdf is a continous (i.e. it is derivable). The danger of system to fail is given by the 

failure rate r(x) defined as [7] 






x

duur

exFxF
xF

xf
xr 0

)(

)(1)(,
)(

)(
)(              (1) 

where )(xF  is the survival probability or reliability function. The failure rate could be 

increasing i.e. the distribution of L is IFR (increasing failure rate) or is DFR (decreasing 

failure rate). As many real systems become fatigue in time, then many of reliability 

systems are IFR. (While, for instance, from reliability point of view, the lifetime of a 

computer program is DFR!, (see [7]). Examples of IFR (as well as DFR) cdf's are [7] the 

exponential distribution Exp(), of parameter ;  > 0; or a Weibull(0;; υ); >0; υ>1 

distribution, while when 0<υ<1, this distribution is DFR. Note that for any lifetime, the 

pdf f(x), as well as cdf F(x) is zero for 0x : Therefore, in the formulae like this, in the 

following we will specify the pdf f(x) and the cdf F(x), only for x>0. 

Some time, complex reliability systems have a behavior which assumes at the 

beginning of their life an increasing failure rate and later on, a decreasing failure rate. In 

this situation are (see [7]) the lognormal distribution LN(;), >0; >0 and the 

Gamma(0;;υ), >0; υ>1 distribution, which has the pdf 
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


 



0

11 ,0,
)(

)( dxexwherexexxf xx 






           (2) 

Now, we assume the following situation inspired by [3,6]: the system was produced in 

a country (or in a climate) and it was stated that the lifetime L has a Gamma(0;;υ), >0; 

υ>1 distribution. If the system is running (or used) in other conditions (i.e in another 

climate), then it is assumed that the initial life time distribution is altered, becoming L
*
; 

such that this distribution becomes Gamma(0;;υ), where  is a random variable 

Exp(): The problem is to determine the pdf of L
* 

 which is a mixture or a composition 

from Gamma(;υ) with respect to Exp() distribution of : (Note. In [2,3,6], L
*
 is a 

mixture between Exp() and Gamma(0;;υ) of  which is a Loomax distribution). 

 

2. THE PROBABILITY DISTRIBUTION OF L
* 

 

Let us calculate the pdf of L* as the mixture of a Gamma(0;;υ) distribution with 

the Exp() distribution of : Using the pdf of , then the pdf of the mixture is 

 








0

1*

)(
)( 



 


deexxf x . 

After some calculations we obtain 









0

)(1*

)(
)( 



 



deexxf x  

which finally gives 

 
0,)(

1

* 





x
x

xf







                           (3) 

or if we denote 



   the final form is 

 
0,0,0,

1
)(

1

1
* 
















x
x

x
xf

                                                                         

(3’) 

The cdf of L
*
 is calculated as follows 

   






x x

du
u

u
duufxF

0 0

1

1
**

1
)()(








 

which is an integral of a bimome type, i.e. 

  

x
pnm dubuauI

0

, 

where a=1; b =, m= υ-1; n=1; 
s

p
1

1





 p=-υ-1, s=-1: According to 

Tchebycheff's conditions [1], this integral is calculated by using the transform 

2

1 ,
11

,1
z

dz
du

z

z
uhencexzz s


 


 

 

and because 
x

zxuandzu



1

1
10  it results that 
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 
 















1

1

1

11

2

1

1

1

1

1

* 1
1

)(

x

x

dzzz
z

dz

z

z
xF









  . 

By simple calculations it results that 

















x

x
xF

1
)(* .                (4) 

The moment of order k is calculated as follows 

 
 

dx
x

x
LEm

k
k

k 









0

1

1
*

1






 . 

This is again a binome integral where 
s

p
1

1





 , s=is an integer,  

1,1  kmn  . According to mentioned Tchebytcheff's conditions [1], the integral 

can be also calculated by using transform xzeixz s    1..,1 1 . 

Therefore a k-st iteration (with respect to k ) of the integral 

 
dx

x

x
I

k

k 









0

1

1

1





 

using the specified transform, gives 

   
 

  ..1
0

1
1

11
1

1

0

1

0

1
eidzzz

k

k
zz

k
dzzzI kk

k

kk

k

kk

kk 
































 
 

 
  dzzz

k

k
I kk

kk 










0

11



.

 
For k = 1 one obtain 

 
 

  21

1
1

1

1
1

0

1

11











   




dzzI .

 
Therefore 

  21
1







m .

         

 (5)

 

For k = 2 one obtain 

 
 

 
  

 

    2

0

3

2

3

2

0

2

22

432

2

1
23

2

0

1

3

11

2

2
1

2

2










































 


















dzz

zz
dzzzI

Hence 

   432

2
22







m .

               (6) 

Now the variance  *2 LVar is calculated as 

      













2143

2

)2(
22

2

12

2








 mm
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which is finally 

  0
)2(

2423

2

2 


  



 .

               (7) 

 

In simulating reliability models which involve this distribution, it is interesting to built 

up algorithms (see [5,8]) for simulating it, i.e. algorithms for producing sampling values 

of 

 

*L . 

 

3. SIMULATION OF THE DISTRIBUTION 

 

Such an algorithm is designed to produce a sampling value of *L  and when repeating 

it n times, to obtain a sample *

1L  , 
*

2L  , … , 
*

nL  . 

In the following, we present simulation methods for *L . 

3.1 The inverse method 

The Chintchin's lemma says (see [5,8]): 

Lemma. If a random variable X has the cdf F(x) and U is a rv uniformly distributed 

over (0; 1), then the cdf of )(1 UF  is F(x): (Note that equivalent relation )(1 XFU  is 

valid). 

Note that each computer (i.e. any language) has an algorithm (generator) to produce 

(when is called), an uniform random number U, and, when calling it next time, it 

produces another uniform random number U. 

(In other words, successive calls of the generator, produce a sequence of U′s 

independent and uniformly distributed). Note also (see [5,8]) that if in an algorithm 

appears operation 1-U, we can use instead U, because when U is a random number, 1-U is 

also a random number. 

From the Lemma it results that in other words, to simulate a sampling value of X; the 

following algorithm is derived: 

Alhorithm 1. 

begin 

-Simulate a random number U uniformly distributed over (0, 1); 

-Take )(1 UFX  ; 

end 

Therefore, the algorithm applied to *L  is: 

The inverse algorithm for simulatin 
*L  

- Simulate an uniform random number U; 

- Calculate 





 1

1

1*

1

1
)(

U

U
UFL



   

Note that if U is close to 1 (which might happen!), the algorithm fails, therefore we 

must reject a value of U for which 

1

1 U  is close to the zero of the computer involved 

and use the next random number U: 

To simplify the writing, in the following when we use the U, it is assumed that it is a 

random number uniformly distributed over (0, 1): 

For simulating 
*L  we will use also the acceptance-rejection method which will be 

called in the following the rejection method (see [5,6,8]). 
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3.2 The rejection method 

This method assumes [4,5,8] that we can simulate some simpler random variables S1, 

S2; ::: until they satisfy some condition; the required random variable X is calculated in 

terms of random variables NiSi , which satisfy the condition. 

There are several theorems which lead to rejection methods. We will use the following 

two theorems. 

Theorem 1 [4,5,8,9]. Assume that random variable X to be simulated, has a pdf 

Dxxf  ,0)( D and there is another random variable Y with pdf 

RDxxf  ,0)(  which can be simulated, such as   const
xh

xf
Dx   ,

)(

)(
, . 

If U is uniform (0; 1) stochasticaly independent from Y , and they satisfy the condition 

)(

)(

xh

xf
U


  ,                            (8) 

then Y has the pdf f(x): 

 

Therefore the algorithm for simulating X is: 

Algorithm 2. 

repeat 

- generate U uniform (0; 1); 

- generate Y having pdf h(x) 

until 
)(

)(

xh

xf
U


  

Take X = Y: 

 

The performance of the algorithm is given by the accepting probability 



1

)(

)(
Prob 










Yh

Yf
Upa

                           (8’)                 

therefore it is necessary that 1 . (The value of ap  results from the proof of the 

theorem). The algorithm is fast if 1ap , is close to 1. 

A rejection algorithm based on this theorem for simulating *L  is obtained if we take 

as enveloping pdf  

 21
)(

x
xh






  

In this case we have the ratio 

 
1

211*

1

1

)(

)(
)(


















x

xx

xh

xf
xr  

Since r(x) is an increasing function and positive, it results that 

   



1)(lim xr
x

. 

Hence 

1

1





ap                (8”) 
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which makes sense if 11  . The cdf 
x

duufxH
0

* )()(  has the inverse 











U
Y

1
1

1


 

and therefore the rejection algorithm is obvious. 

 

The above theorem is also called the enveloping theorem because the main assumption 

of the theorem says that )()( xhxf  , i.e. there is a   such as the graph of f(x) is 

enveloped by the graph of Dxxh ,)( . 

Theorem 2 [4,5,8]. Assume that the pdf f(x) of the r.v. X to be simulated is in the form 

 )(1)()( xQxrcxf                 (9) 

where c = const,  r(x) is the pdf of a random variable Y and Q(x) is the cdf of a r.v. Z: 

Then, the rv Y, satisfying condition YZ   with Z and Y independent random variables, 

has the pdf f(x): 

Hence the theorem says that the sampling value X is the accepted Y. 

The resulting rejection algorithm is 

 

Algorithm 3. 

repeat 

- simulate Z; 

- simulate Y independent of Z; 

until YZ   ; 

Take X = Y. 

The performance of the algorithm is given by 

 
c

YZpa

1
Prob   

hence it is necessary that c>1. (The value ap  results from the proof of the theorem). 

There is another form (a kind of dual of the theorem 2), let us call it 

Theorem 2' in which the pdf is in the form 

)()()( xQxrcxf                  (9′) 

and the condition becomes YZ  . 

Therefore the algorithm deriving from Theorem 2' is 

Algorithm 3' 

repeat 

- simulate Z; 

- simulate Y independent from Z; 

until YZ  ; 

Take X = Y. 

We apply this theorem in the form (9') , i.e. 

)()(
1

)(
1

1
* xQxrc

x

x
xf 















 

where 

 2

1

1
)(

1
)(,

x
xr

x

x
xQc




























           (9”) 
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and 


1
ap  (i.e 1 is required). The algorithm is obvious and random variables Z and Y 

are simulated by the inverse method according to formulae 

U

U
Y

U

U
Z

q

q 





11

,

1

1
1

1


. 

The accepting probability is 


1
ap  which works if 1 , but not very large. 

Finally, we note that for simulating *L  the algoritnms 1 and 2 are prefered. (They are 

faster!). 

 

4. AN APPLICATION TO RELIABILITY 

 

Assume that a system consists in n components having the lifetimes *

1L  , 
*

2L  , … , 
*

nL  

n independent and identicaly distributed. In reliability is interesting to consider 

random variables 
*

1

*

1
max,min i

ni
i

ni
LWLV


                         (10) 

(The lifetime V is applied when all components fail and the lifetime W is applied when all 

components run). It is obvious that cdf's of these rv's are respectively 

   nw

n

v xFxFxFxF )()(,)(11)( ****                                                                       (11) 

and the corresponding pdf's are [10] 

    1***1*** )()()(,)(1)()(



n

w

n

v xFxfxfxFxnfxf                                                  (11′) 

i.e for our rv L
*
 we have 

       

)1(

1

1
*

1

1

1
*

11
)(,

1
1

1
)(





















































n

w

n

v
x

x

x

xn
xf

x

x

x

xn
xf


























              (11") 

 

Simulation of V and W can be done using directly formula (10) (i.e. calculating min 

and max of the simulated sample *

1L  , 
*

2L  , … , 
*

nL ). 

Taking into consideration formulae (11'),(11") and theorems 1 and 2, the following 

concluding theorem is valid 

Theorem 3. The simulation of V and W can be done by using theorem 1 with 

enveloping density f
*
(x) or using theorems 2 and 2', noticing that pdf 's )(,)( ** xfxf wv   

are in the forms (9) or (9') taking into account froms (11"). 

The proof is obvious, existing 0  (in theorem 1), r(x) is f
*
 (x) (from (11') or (11")) 

and Q(x) in theorems 2 or 2' are either 
 

1
1(

1
1,

1








































n
n

x

x
or

x

x









. 

 

4.1. The case when n random  

In some practical situations, the number of components of the system is a random 

variable, say 0, ** NN  [10]. Possible discrete distributions [10] are Poisson(); >0, 

or Geometric(p); 0<p<1; and these distributions are truncated on  ,1 . 
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 In this case the distribution of *L  is called [10] target distribution. (In [10] there are 

used target distributions Weibull and Loomax). Here we will consider also the new case 

when *N is Binomial(n; p); Nn , <p<1. 

Distributions of V and W when *N is Geometric(p). The frequency of Geometric(p) 

distribution, truncated on  ,1 is 

  ...,2,1,1*   kqpkNP k

                                                                                        (12) 

The cdf of V is the mixture 

 
















































1

1

1
11)(

k

k

k

v
x

x
qpx






                                                                        (13) 

which gives 





























































































11

1

1
1

1
11

1
1

1
)(

k

k

k

k

k

k

v
x

x
q

x

x
p

x

x
qp

q

p
x














 

which finally gives 































































x

x
q

x

x
pxv

1
11

1

1
11)(                                                         (14) 

The rv V from (10) can be simulated by the inverse method (based on the inverse 

)(1 Uv

  

 of (14)). 

Using the truncated distribution (12), the cdf of W is 












































































1

1

1

1

1

111
)(

k

k

k

k

k

k

w
x

x
q

x

x
p

x

x
pqx














 

which gives 



































x

x
q

x

x
pxw

1
1

1

1
)(                                                                               (15) 

The rv W can be simulated also by the inverse method (use the inverse )(1 Uw

  of 

(15)). 

 

Distributions of V and W when N_ is Poisson() . 

The truncated Poisson() distribution is 

 1,
!1

1
)( * 


  ke

ke
kNP

k





 .                                                                                 (16) 

The cdf of V is the mixture 
k

k

k

v
x

x

ke

e
x 




































1 1
11

!1
)(












,

 

which finaly is 
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



























































x

x

v ee
e

e
x

1
1

1
)(  .                                                                                  (17) 

Therefore, the rv V can be simulated by the inverse method. 

The cdf of W is the mixture 
k

kk

k
k

w
x

x

ke

e

x

x

ke

e
x 
















































11 1!

1

11!1
)(



















  

which finaly gives 

































1
1

)(
1












x

x

w e
e

e
x .                                                                                         (18) 

In this case, the rv W is also easy simulated by the inverse method. 

Simulation of V and W when N_ is Binomial(n; p). 

The truncated Binomial(n; p), 0<p<1 , distribution for nkkN ...,,2,1,*   has the 

frequency function 

  ...,2,1,1,
1

1* 


  kpqqpC
q

pkNP knkk

nn

                                                   

(19) 

The mixture cdf of V in this case is 




































































11 1
11

1

1

1
11)(

k

k

knkk

nn
k

k

knkk

nv
x

x
qpC

qx

x
qpCx










 

which finaly gives 

 




























































n

nv q
x

x
p

q
x







1
1

1

1
1)(

.                                                               

(20) 

The mixture of W with truncated Binomial(n; p) is 




















1 11

1
)(

k

k

knkk

nnw
x

x
qpC

q
x






 

which finaly gives 








































 n

n

nw qq
x

x
p

q
x







11

1
)(

                                                                      

(21) 

Since cdf's (20) and (21) can be easily inversed, the inverse method for simulating V 

and W can be applied. Finally, note that the hypothesis that N_ is binomial is more 

realistic for a sistem with n components (n= fixed), which might have only  components 

runing (1<<n) at a given time. 
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effective than linear regression models in dealing with nonlinear relationships. We are trying to 

find out how relevant is to use a Fuzzy Neural Network for prediction because it handles well the 
nonlinearity associated with the data. 
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1. INTRODUCTION 

 

In this work we propose a specific neural network for predicting personality, by 

special type of Fuzzy Gaussian Neural Network (FGNN) understanding that it has so 

special the connections (between the second and third layers) and the operations with the 

nodes, too. 

We shall propose to apply the FGNN for predicting a users’ Big Five personality traits 

(the five factor model of personality) from the public information they share on 

Facebook. The Big Five traits are characterized by the following: Neuroticism, 

Extraversion, Openness, Agreeableness, and Conscientiousness. 

To emphasize the performances of our proposed approach for predicting personality 

we have compared it both with a neural method of regression (like Multilayer 

Perceptron=MP) and with a non-neural approach Multiple Linear Regression Model 

(MLRM). The comparison of FGNN and respectively MP versus MLRM marks both the 

competition nonlinear over linear and of neural over statistical, too. 

To test the performance of the neuro- fuzzy prediction achieved based on FGNN we 

shall use the Normalized Root Mean Square Error (NRMSE). According with the 

NRMSE criterion, we have achieved that the prediction with FGNN is better than with 

others two methods both over the training lot and over the test lot, too. 
 

2. RELATED WORK 

 

One distinguish some methods used in prediction with Social Media [12]: Bayes 

classifier, K-nearest neighbor classifier, Artificial Neural Networks, decision trees, model 

based prediction. 

In [3], Golbeck made a Pearson correlation analysis between subjects’ personality 

scores and each of the features obtained from analyzing their tweets and public account 

data. There are a number of significant correlations here, however none of them are 

strong enough to directly predict any personality trait. He described later in [4] the results 

of predicting personality traits through MLRM.  



Dealing the Nonlinearity Associated with the Data Using Artificial Neural Networks 

16 

In the case of the MLRM applied in [4] for predicting personality, the optimal 

parameters were computed using the correlations between each profile feature and 

personality factor. 

More recently, [10] studied the relationship between sociometric popularity (number 

of Facebook contacts) and personality traits on a far larger number of subjects.  

The paper from [9] develops a fuzzy neural network approach to financial 

engineering; this model was successfully applied to the prediction of daily exchange rates 

(US Dollar-Romanian Lei). In this work we extend the application domain of fuzzy 

neural networks, viz. in the field of text mining, to predict personality traits. This FGNN 

having M output neurons is unlike the exchange rate FGNN [9], which uses a single 

neuron in the last layer to estimate the current exchange rate based on the previous m 

daily exchange rates. 

We are trying to find out how relevant is to use the FGNN for predicting personality 

because it handles well the nonlinearity associated with the data. 

 

3. BASELINES 

 

The Artificial Neural Networks (ANNs) are well-suited for a very broad class of 

nonlinear approximations and mappings. The ANN with nonlinear activation functions 

are more effective than linear regression models in dealing with nonlinear relationships. 

A feed-forward neural network is a nonparametric statistical model for extracting 

nonlinear relations in the data, namely it is a useful statistical tool for nonparametric 

regression. 

A feed-forward neural network with an specific activation function is identical to a 

linear regression model: 

 the input neurons are equivalent to independent variables or regressors; 

 the output neuron is the dependent variable;  

 the various weights of the network are equivalent to the estimated coefficients 

of a regression model. 

Some advanced neural network techniques are related to more complex statistical 

methods such as: 

1) kernel discriminant analysis 

2) k-means cluster analysis 

3) Principal Component Analysis(PCA). 

Some neural networks do not have any close parallel in statistics, such as: 

1) Kohonen’s self-organizing maps 

2) Fuzzy Gaussian Neural Network. 

The regression and correlation are related as the both of them are designed to extract 

relations between some variables.  

In the case of a linear regression model, of the first order, "the slope of the regression 

line is the correlation coefficient times the ratio of the standard deviation of y to that of x." 

MLRM is a method used to model multiple linear relationship between a dependent 

variable and more independent variables. 

A major problem with multiple regression consists in the large number of predictors 

that are available, although only a few of them are actually significant.  

The advantage of MLRM is that it can be implemented very easy. 

Example 1. We are interested [6] in exploring for a sample of 32 vehicles the 

relationship between: the number of gears of a vehicle, the overall length (in inches) and 

its fuel efficiency (measured in miles per gallon). 
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FIG. 1. Matlab code 

 

  
FIG. 2. Multiple linear regression through a scatter plot in space to which a plane of the form z = 36.4857 + 

3.8272x + 0.1514y 

 

Our FGNN represents [2] a modified version of Chen and Teng fuzzy neural network, 

by transforming the function of approximation into a function of classification. The 

change affects: 

 the number of the classes (the number of the neurons belonging to the last layer); 

 the equations of the fourth layer, but the structure diagram is similar. 

 

 

 

 

 

 



Dealing the Nonlinearity Associated with the Data Using Artificial Neural Networks 

18 

4. FGNN ARCHITECTURE 

 

The four-layer structure of the Fuzzy Gaussian Neural Network (FGNN) is shown in 

the Fig. 3. 

 
FIG. 3. Structure of FGNN 

 

 m means the number of the neurons corresponding to the input layer; 

  mxxX ,,1   represents the vector which one applies to the FGNN input; 

  
KjmiijW

,1,,1

3


is the weight between the   jKi 1 -th neuron of the second layer 

and the neuron j of the third layer, where K is the number of the neurons from the 

third layer; 

  
mjKiijW

,1,

4


 is the connection from the neuron i from the third layer and the 

neuron j from the last layer of the FGNN; 

 M represents the number of the classes; 

  MyyY ,,1  is the output of the FGNN. 

 

The construction of FGNN is based on fuzzy rules of the form: 

 

j : If 1x  is j
1A  and 2x  is j

2A  … and mx  is j
mA , then 1y  is j

1 , …, My  is j
M ,  

where: 

 m is the dimension of the input vectors (number of the retained features); 

 Kjj ,1,  is the rule index; 

 M is the number of the output neurons (it corresponds to the number of classes); 

  mxxX ,,1   is the input vector, corresponding to the rule j ; 

 miA
j

i ,1,   are some fuzzy sets corresponding to the input vector; 

  MyyY ,,1   is the vector of the real outputs, corresponding to the rule j  ; 

 Mi
j

i ,1,  are some fuzzy sets corresponding to the output vector. 



Review of the Air Force Academy                                                                  No.2 (34)/2017 

19 

The j-th fuzzy rule is illustrated in Fig. 4. 

 
FIG. 4. The j-th component of FGNN 

 

As in the case of the other neural networks, the FGNN input layer is a transparent 

layer, without a role in the data processing; the neurons of the first level (input level) do 

not process the signals; they only transmit the information to the next level. 

The neurons of the second layer linguistic term layer (level 2) of the FGNN are 

membership neurons, resulting by the fuzzification of the first layer neurons. Each neuron 

of this level performs a Gaussian membership function [2], [6], [9]. The FGNN 

parameters have a physical significance, in the meaning that:  

 Kjmimij ,1,,1,   represents the average; 

 Kjmiij ,1,,1,   is the variance  

of the membership functions corresponding to some fuzzy sets, m being the number of the 

neurons from the input layer of the FGNN and K representing the number of the fuzzy 

considered rules.  

The number of neurons characterizing this level is mK . Each input 
2

kix  is transformed 

by this layer into a fuzzy membership degree. 

The third layer of the FGNN is called the rule layer. The connections between the 

membership neurons of the second layer and the rule neurons that characterize the third 

layer of the FGNN indicate the premise of the fuzzy rules. This layer computes the 

antecedent matching by the product operation [2], [6], [9]. 

The last layer of the FGNN is the output layer, which contains the output neurons. The 

conclusion (the consequence) of the rules is evidenced by the connections between the 

neurons of the third layer and the neurons of the output layer. This level performs the 

defuzzification of its inputs, providing M non-fuzzy outputs. 

The FGNN parameters one initialize according to the on- line initialization algorithm 

[2], [6], [9] and they will be refined during the training algorithm [2], [6- 9]. 

 

5. TRAINING ALGORITHM 

 

The training algorithm is of type back- propagation (BP), in order to minimize the 

error function: 





K

k

kE
K

E
1

,
1

 (1) 
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where: 

 kE  represents the error for the rule k: 

  ,,1,
2

1

1

2
KkydE

M

i

kikik  


 (2) 

 

  kMkk ddd ,,1   is the ideal output vector of the FGNN when at its input is 

applied the vector having the index k; 

  kMkk yyy ,,1   is the corresponding real output vector of the FGNN ( Kk ,1 ). 

 

The training of this neural network is supervised, namely for of the K vectors from the 

training lot, we know the set of the ideal outputs. The refining of the FGNN parameters 

can be divided into two phases, depending on the parameters of premises and respective 

of conclusions of the rules, as follows: 

A) in the part of the premise of the rules, the means and variances of the Gaussian 

functions one refine. 

B) in the conclusions of the rules, the weights relating to the latest layer of FGNN 

must to be refined, the others being equal to 1. 

 

7. EXPERIMENTAL EVALUATION 

 

We are trying to find out how relevant is to use the Fuzzy Gaussian Neural Network 

for predicting personality because it handles well the nonlinearity associated with the 

data. We are also asking if the FGNN proves very good prediction performances over a 

statistical approach of prediction like MLRM and over a neural network as MP, too. 

We use a data set made available by [3], [11]. The personality test called "The Big 

Five" (the five factor model of personality) represents the most comprehensive, reliable 

and useful test of personality concepts. It has emerged as one of the most well-researched 

and well-regarded measures of personality structure in recent years. 

The Big Five traits are characterized [3] by the following: 

 Openness: curious, intelligent, imaginative. High scorers tend to be artistic and 

sophisticated in taste and appreciate diverse views, ideas, and experiences; 

 Conscientiousness: responsible, organized, persevering. Conscientious individuals 

are extremely reliable and tend to be high achievers, hard workers, and planners; 

 Extroversion: outgoing, amicable, assertive. Friendly and energetic, extroverts 

draw inspiration from social situations; 

 Agreeableness: cooperative, helpful, nurturing. People who score high in 

agreeableness are peace-keepers who are generally optimistic and trusting of 

others. 

 Neuroticism: anxious, insecure, sensitive. Neurotics are moody, tense, and easily 

tipped into experiencing negative emotions. 

The data is preprocessed in the following manner: we shall build a data set of 300 

vectors, a half of them representing the training lot and the other half being the test lot. 

These vectors have 20 components, each of them characterizing a personality trait. 

Each component means a correlation between the Big Five and individual words. For 

example [11]: 
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 Neuroticism correlates positively with negative emotion words (e.g. awful (0.26), 

though (0.24), lazy (0.24), worse (0.21), depressing (0.21), irony (0.21), terrible 

(0.2), road (-0.2), Southern (-0.2), stressful (0.19), horrible (0.19), sort (0.19), 

visited (-0.19), annoying (0.19), ashamed (0.19), ground (-0.19), ban (0.18), 

oldest (-0.18), invited (-0.18), completed (-0.18)); 

 Extraversion correlates positively with words reflecting social settings or 

experiences (e.g. Bar (0.23), other (-0.22), drinks (0.21), restaurant (0.21), 

dancing (0.2), restaurants (0.2), cats (-0.2), grandfather (0.2), Miami (0.2), 

countless (0.2), drinking (0.19), shots (0.19), computer (-0.19), girls (0.19), 

glorious (0.19), minor (-0.19), pool (0.18), crowd (0.18), sang (0.18), grilled 

(0.18)); 

 Openness shows strong positive correlations with words associated with 

intellectual or cultural experience (e.g. folk (0.32), humans (0.31), of (0.29), poet 

(0.29), art (0.29), by (0.28), universe (0.28), poetry (0.28), narrative (0.28), 

culture (0.28), giveaway (-0.28), century (0.28), sexual (0.27), films (0.27), novel 

(0.27), decades (0.27), ink (0.27), passage (0.27), literature (0.27), blues (0.26)); 

 Agreeableness correlates with words like: wonderful (0.28), together (0.26), 

visiting (0.26), morning (0.26), spring (0.25), porn (-0.25), walked (0.23), 

beautiful (0.23), staying (0.23), felt (0.23), share (0.23), gray (0.22), joy (0.22), 

afternoon (0.22), day (0.22), cost (-0.23), moments (0.22), hug (0.22), glad (0.22), 

fuck (-0.22); 

 Conscientiousness has strong positive correlations with words like: completed 

(0.25), adventure (0.22), stupid (-0.22), boring (-0.22), adventures (0.2), desperate 

(-0.2), enjoying (0.2), saying (-0.2), Hawaii (0.19), utter (-0.19), extreme (-0.19), 

it’s (-0.19), deck (0.18). 

We want to predict M components (M being the number of the neurons from the 

output layer of FGNN) for every vector in order to complete the behavior corresponding 

to a person.  

For evaluation, we use the Normalized Root Mean Square Error (NRMSE) [1]. 

Following [13], the prediction is considered:  

 excellent if NRMSE≤0.1; 

 good if 0.1 < NRMSE≤0.2; 

 fair if 0.2 < NRMSE≤0.3; 

 poor if NRMSE > 0.3. 

For significance testing we use the three models: Multiple Linear Regression Model 

(MLRM), Multilayer Perceptron (MP) and Fuzzy Gaussian Neural Network (FGNN).  

The three models: MLRM, MP and FGNN have been evaluated using a corresponding 

test lot, having a number of vectors equal to that of the training lot. The performance of 

FGNN over MP is based on [6] the fuzzy properties of FGNN, while the MP is a crisp 

neural network. The comparison [6] of FGNN and respectively MP versus MLRM marks 

both the competition nonlinear over linear and of neural over statistical, too. 

 

CONCLUSIONS 

 

The ability to predict personality has implications in many areas: 

 like other studies relating to personality and language we adopted the five factor 

model of personality, which describes the following traits on a continuous scale: 

neuroticism, extraversion, openness, agreeableness and conscientiousness; 
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 in justice as the personality rights are some non- patrimonial civil rights, being 

regulated in article 58 NCC(New Civil Code); the protection of human personality 

is regulated by the Constitution of the Romania and the NCC(see the article 252). 

To emphasize the performances of our proposed approach for predicting personality 

we have compared it both with a neural method of regression (like MP) and with a 

nonneural approach (MLRM), too. 

According with the NRMSE criterion, we have achieved that the prediction with 

FGNN is better than with others two methods both over the training lot and over the test 

lot, too. 

The advantage of the FGNN consists in the fact that, for certain values of the 

overlapping parameters one achieve very good recognition rates of the test lot. 

A major problem with multiple regression consists in the large number of predictors 

that are available, although only a few of them are actually significant. 
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1. INTRODUCTION 

 

In order to become more competitive on the market, many manufacturers are investing 

resources for improving the reliability of the systems and components they produce. Two 

approaches are commonly used in order to reach a high reliability of a system. 

In the first approach the system's reliability is increased during the design phase by 

increasing the number of redundant components in the various subsystems of the 

considered system. But by increasing the number of identical components there are also 

involved increases in the cost, the weight or the volume of the sub-systems, which impose 

additional constraints on the overall cost, weight or volume of the system. This first 

model is called the Redundancy Allocation Problem (RAP) and was first introduced by 

Fyffe et al. in [1]. There are many varieties of RAP problems in the field of reliability 

optimization, which were widely investigated by using many optimization methods, 

including the meta-heuristic ones. For an overview of RAP see Kuo and Prasad [2], and 

for surveys of the most recent research advances in RAP problems see Kuo [3] and 

Chambari et al. [4]. 

In the second approach the system reliability is increased by increasing the reliability 

of the components, and it can be applied to both the design and operational phases of the 

system. In order to determine the components which should be considered for reliability 

improvement and their optimal reliability values, taking into account that there are also 

some economic cost limitations, as opposed to the reliability (safety) requirements, some 

combinations of Fault Tree Analysis (FTA) (see [5]) techniques and mathematical 

optimization techniques are employed. This second model is called the Fault Tree 

Optimization (FTO) problem and it was investigated by applying mainly Genetic 

Algorithms (GA) optimization techniques (see [6], [7]). 

The models and methodologies based on probabilistic risk analysis and optimization 

can be extended from optimizing the design and operation of systems and sub-systems to 

optimizing the design and operation of complex industrial systems, like nuclear power 

plants, or fossil power plants (see [8]).  

mailto:george.anescu@gmail.com
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The goal of such a methodology is to minimize the risk to have a nuclear accident or 

the economic risk to shut down the production for all the possible reasons.  

In design the focus is on component quality and redundancy levels, while in 

maintenance and testing the focus is on scheduling tasks and human reliability. After 

modeling the systems and sub-systems by using the FTA methodology, the next step is to 

model the Accidental Sequences (AS) with Event Trees (ET) ([9]). In an AS several 

systems are performing their functions successfully or unsuccessfully. The combination 

of different systems performing their functions right or wrong drive the AS to different 

final Plant States (PS) which can be grouped, according to the degree of damage 

produced, as totally successful, partially successful, or unsuccessful. The plant states can 

be quantified and some constraints can be imposed on the unsuccessful states according 

to some permissible upper and lower risk limits. When the total investment and the 

operating budget is limited, the Event Tree Optimization (ETO) problem consists in how 

to optimally distribute the funds so that all the unsuccessful Plant States in ET are 

observing the imposed permissible risk limits. 
 

2. MIXED INTEGER NON-LINEAR PROGRAMMING (MINLP) PROBLEM 

 

The most general form of the reliability optimization problems treated in this paper is 

the MINLP formulation where equality or inequality constraints can be applied to the 

objective function and some of the decision variables can take continuous real values in 

real intervals, while other decision variables are restricted to integer values in sets of 

consecutive integer values ([10]): 

  minimize   

  subject to                 (1) 

with: 

                                                                                
where,  is a real -dimensional vector of decision variables ( ), 

there is a number  such that the last  decision variables are restricted 

to integer values,   is the continuous objective function,  is the non-

empty set of feasible decisions (a proper subset of ),  and  are explicit, finite 

(component-wise) lower and upper bounds of ,  is a finite 

collection of continuous inequality constraint functions, and  is 

a finite collection of continuous equality constraint functions. No other additional 

suppositions are made on the MINLP problem and it is assumed that no additional 

knowledge about the objective function and constraint functions can be obtained, in this 

way treating the MINLP problem as a black box, i.e. for any point  in the boxed domain 

 it is assumed the ability to calculate the values of the functions , 

, , but nothing more. In order to efficiently handle the 

constraints in constrained optimization problems one of the best approaches is to apply 

the Deb's Rules (see [11]). For a detailed constraints handling methodology based on 

Deb's Rules see [12]. In the MINLP model another important issue is the handling of the 

integer constraints. In the population based meta-heuristic optimization methods the 

integer decision variables are treated like the continuous variables, but when the objective 

function  is evaluated the values rounded to the closest integer, 

, are used in the evaluation. 
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In [12] the FSA-DE variant of Differential Evolution (DE) was constructed by 

implementing and experimentally testing a set of four gradual and cumulative 

improvements to the initial DE/rand/1/bin scheme (originally introduced in [13]): 1) a 

randomization of the scaling control parameter in the real interval , 2) a Random 

Greedy Selection method (RGS, see[14]); 

 3) the use of a normal (Gaussian) probability distribution for sampling the crossover 

probability, and 4)  a resetting mechanism. FSA-DE proved better performance, while the 

dependence on method parameters was eliminated. 

 

3. RAP CASE STUDY 

 

We consider a known RAP case study, the 5-unit bridge structure shown in FIG. 1 

(see [15]): 

 
FIG. 1. The schematic diagram of 5-unit bridge system ([15]) 

 

In order to efficiently compute the reliability of this system we first eliminate the bridge 

components by applying the Bayes Total Probability Theorem: 

 

                                                                      

                                                                           (3) 

 

where we used the notations  for the original bridge system, , , …,  for the 

boolean states of the sub-systems (true means perfectly working, while false means 

totally defective) and  are the reliabilities of the sub-systems. The 

simplified systems  and  are of serial-parallel type and their reliabilities can 

be easily calculated:   and 

. The sub-systems are comprising identical 

redundant (parallel connected) components, and their reliabilities are simply calculated as 

, with  the number of components in subsystem . The 

optimization problem for the 5-unit has the dimension , the decision variables being the 

numbers of components  and the component reliabilities : 

 

maximize  

 

subject to                  (4) 

 

where: ,  and 

. The other constraints applied to the 5-unit bridge system are: 

, with  taking integer values and  taking real 

values. The design data are , ,  and . 

The other design constants are the ones given in [15]. Table 1 gives the best results 

obtained by FSA-DE method for 5-unit bridge system problem. 
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 Table 1 – RAP Case Study, 5-Unit Bridge System, FSA-DE results 

Objective Stage   Attribute 

 

 

 

1 0.828045581 3  
2 0.857778608 3  
3 0.914351326 2  
4 0.648110393 4  
5 0.704001133 1  

 

Table 2 gives some comparison results between various other recently employed 

optimization methods and FSA-DE method for the 5-unit bridge system case study, and it 

can be observed that FSA-DE method was able to achieve the best known maximum 

reliability. 

 
Table 2 - RAP Case Study, 5-Unit Bridge System, comparative results 

Parameter HS [16] IPSO [17] ABC [18] ICS [15] FSA-DE 

 0.99988962 0.99988963 0.99988962 0.99988964 0.99988964 

 3 3 3 3 3 

 3 3 3 3 3 

 2 2 2 2 2 

 4 4 4 4 4 

 1 1 1 1 1 

 0.82883148 0.82868361 0.828087 0.828094038 0.828045581 

 0.85836789 0.85802567 0.857805 0.858004485 0.857778608 

 0.91334996 0.91364616 0.914240 0.914162924 0.914351326 

 0.64779451 0.64803407 0.648146 0.647907792 0.648110393 

 0.70178737 0.70227595 0.704163 0.704565982 0.704001133 

 

6. FTO CASE STUDY 

 

The first step in a FTA methodology involves the construction of the fault tree 

representation of the system. Usually a top-down approach is adopted, starting from the 

definition of the general failure condition of the system (the top event) and logically 

developing the fault tree structure, through OR, AND and NOT logical gates, from more 

general failure events to more specific failure events associated to the sub-systems and 

the components of a system. When the logic cannot be further developed, the last 

generated events are considered the basic events of the fault tree. Each basic event has an 

associated reliability  and the corresponding amount of investment  which is needed to 

achieve the reliability. For each basic event it is needed a reliability-cost curve, which is 

available from mathematical modeling and calculation, historical data, or can be provided 

by the manufacturer. A typical reliability-cost curve is presented in FIG. 2, where it can 

be observed that the reliability is increasing with the cost and it is asymptotically 

approaching the value of  with a very high cost. When the costs are known, once 

calculated the reliabilities of the basic events ,  the overall reliability of the system 

can be calculated using the fault tree logic. We can define the following optimization 

problem for Reliability Maximization (achieving the maximum possible system reliability 

within a given amount of investment): 

 maximize  

 

subject to                                                                     
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FIG. 2. A typical reliability-cost curve ([6]) 

 

where  is the number of basic events, are the associated costs and 

 is the total investment. We built a simple FTO case study starting from a simple fault 

tree with seven basic events (see [19]) presented in FIG. 3. 

 
FIG. 3. A fault tree example ([19]) 

 

We can logically evaluate the TOP event by applying a top-down approach: 

, with 

. In order to evaluate the system reliability we apply 

recursively the Bayes Total Probability Theorem by first eliminating the basic events 

which appear multiple times, and after that evaluating the remaining tree structures by 

applying a simple bottom up approach. We have: 

 

 
 

            

 
 

with 

 

 
We modeled the reliability-cost curve by simply using the hyperbolic tangent function: 

 
with the constants  (which control the slope of the curve) given in 

Table 3.  
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We assumed that we started from an initial investment of 7000 units which is distributed 

among the basic events, so that with the minimal costs  given in Table 

3, the unreliabilities  are the same as given in [19]. 

 
 Table 3 - Data for FTO case study 

    
1 0.003701 0.01614 1300.0 

2 0.004292 0.0625 800.0 

3 0.004215 0.3125 400.0 

4 0.003701 0.01614 1300.0 

5 0.002837 0.00125 2600.0 

6 0.003662 0.5 300.0 

7 0.003662 0.5 300.0 

 

The available investment was   units, with an additional investment of 

5000 units. Table 4 gives the best result obtained by FSA-DE method. It can be observed 

that with an additional investment of 5000 units distributed among the basic events ,  

and  the system's reliability was increased from 0.96461053 (which is obtained with the 

minimal investment of 7000 units) to 0.99999577. 

 
 Table 4 - FTO case study, FSA-DE results 

        
3815.276 3053.641 400.0 1531.068 2600.0 300.0 300.0 0.99999577 

 

7. ETO CASE STUDY 

 

The ETO case study considered in this section (see FIG. 4.) is based on a simplified 

Event Tree obtained from the original Event Tree built for CAREM 25 Project ([20]). 

CAREM 25 is a CNEA (Comisión Nacional de Energía Atómica) project from Argentina 

aiming to develop, design and construct a small nuclear power plant with an electrical 

output of about 27 MW. According to [20], the Accidental Sequences (AS) were built 

simplifying the headers to show only the human error intervention. Five models were 

taken into account for the representation of the human behavior: 1) Technician, 2) 

Technician and supervision, 3)  Technician and supervision with written procedures, 4) 

Technician and administrative control, 5) Technician, supervision and administrative 

control. 

To each human behavior model a human error probability (or error frequency) 

𝒒𝒋, 𝒋 = 𝟏, … , 𝟓, was associated, as determined in [20] by applying Human Event Tree 

(HEP) modeling. Also a cost, 𝒄𝒋, 𝒋 = 𝟏, … , 𝟓, was associated, the data being presented in  

Table 5. The ASs in an ET are initiated at the left by an undesired event ue, which in the 

considered case study also came from a human error. The ASs are simplified in order to 

show in the headers only the human interventions : 𝒉𝒆𝟏, 𝒉𝒆𝟐, 𝒉𝒆𝟑, 𝒉𝒆𝟒.  An up branch 

is representing a successful intervention and an down branch is representing a wrong 

intervention. On the right hand side the final Plant States (PS) are represented.  

The successful PSs and the successful human interventions are represented 

underlined. For an unsuccessful PS a frequency between 10
-7

  and  10
-9 

is considered a 

reasonable value. Any value lower than 10
-9

 represents a too high cost and any value 

higher than 10
-7

 represents a very high risk. 
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FIG. 4. The simplified CAREM 25 Event Tree ([20])  

Table 5 - Data for ETO case study 

Model 1 2 3 4 5 

error freq. 0.505 0.1009 0.001105 0.0209 0.0011049 

Cost 240.0 520.0 1530.0 950.0 1670.0 

 

We are required to solve here a combinatorial type of optimization problem where we 

need to associate to each human intervention  in the ET an appropriate 

model , from the five given models, so that the total cost associated to the 

human intervention is minimal, while the frequencies of the unsuccessful PSs are 

observing the required constraints. This problem can be easily modeled as an integer 

programming problem by taking as decision variables the indices of the selected human 

behavior models: 

minimize   

 

subject to   

 

where , 

 and 

. The frequency 

associated to the undesired event was . Table 6 gives the best result 

obtained by FSA-DE method for ETO case study. 

 
 Table 6 - ETO case study, FSA-DE results 

     
2 1 3 2 2810.0 

 

CONCLUSIONS 

 

The paper investigated the suitability of the FSA-DE optimization method for solving 

reliability optimization problems. FSA-DE is advantageous over other optimization 

methods since it is an almost parameter free method. First a known RAP case study was 

investigated by applying the FSA-DE optimization method and the obtained results were 

compared with other results published in the literature.  
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Finally, for illustrative purposes, two new optimization case studies were built 

inspired from published information: a FTO case study and an ETO case study, and the 

numerical optimization results obtained by applying the FSA-DE method were presented. 

The study proved that FSA-DE is a competitive optimization method for solving 

reliability optimization problems. 
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Abstract: In this paper we will use the decomposition of rational functions in simple fractions. 

The rational functions are build using the delay polynomials  L  and  L  of an ARIMA time 

series. 

For decomposition of the time series Xt we use the rational fraction 
 

 

L

L




, and for the 

decomposition of the white noise  at we use the rational fraction 
 

 

L

L




. 

Finally, because for the decomposition of Xt we do not take into account that the roots of 

 L  are greater than one in absolute value, we eventually multiply in the first above case  L  

by  1
d

L  for taking into account the possible trend and by  1
sd

sL  for taking into account the 

possible seasonal components. 

 

Keywords: ARMA and ARIMA time series, delay operator, delay polynomials. 

 

1. INTRODUCTION 

 

The classical decomposition of time series is [3,4] in seasonal components, trend and 

a stationary component. The remaining stationary component, even we obtain it by 

removing seasonal components and trend, even we obtain it by seasonal and non-seasonal 

differentiation, is modeled as  AR p ,  MA q  or  ,ARMA p q  time series. 

For an  ,ARMA p q  we can write 

 

    , wheret tL X L a   (1) 

 

 

1

1

1

1

p
i

i
i

q
i

i
i

L L

L L

 

 






 


  


. (1') 

 

Using the above formula, we obtain [2,3,4] 

 
 

 

 

 

L

t tL

L

t tL

X a

a X









 





. (1") 
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2. THE DECOMPOSITION OF TIME SERIES 

 

For decomposition of Xt we use the decomposition in simple fractions of 
 

 

L

L




. Denote 

now the roots of  L  1x , ..., lx  with the multiplicities 1m , ..., lm . 

If Xt is  ,ARMA p q  with p q , there exists the white noise at such that 

 

 1 1 1

iml
ij

t tj
i j

i

A
X a

x L 


 

 . (2) 

 

If we have p q , the above formula becomes 

 

 
 1 1

,  where
1

iml
ij

t t tj
i j

i

A
X L a a

x L


 

 
 

  (2') 

 

  L  is the quote of 
 

 

L

L




. 

In formulae (2) and (2') the roots of  L  can be complex. In this case we can group 

the conjugate complex roots. We obtain at denominator   2
1 2Re

im

iz z  , and the 

numerator becomes a real polynomial of degree mi. In the case 1im   (simple complex 

roots), we obtain a linear numerator, and a second degree function at denominator. It 

results that if p q , the  ,ARMA p q  is a sum of  AR j  with 1 ij m   for real xi, and 

a time series similar to  2 ,i iARMA m m  for complex conjugate roots with the 

multiplicity mi.All the above parts of Xt have the same white noise at, except multiplying 

by a constant. If  p q   we add to the above decomposition the term  p

p ta



 , and if  

p q   we add the term    tL a  , i.e. a polynomial of degree q p  in lag L applied to 

the same white noise at. 

If we consider the reverse in (1"), we decompose analogously at in terms of Xt. For 

forecasting we can forecast each term in the decomposition of Xt.In the above 

decomposition of Xt the fact that the roots of  L  are in absolute value grater than one 

is used only for stationarity, not for decomposition. For instance, if the time series is 

 , ,ARIMA p d q  we use instead of  L     1
d

L L . If we group the unit root and the 

roots of  L , we obtain a decomposition in  0, ,0ARIMA j  with 1,j d  and an 

 ,ARMA p q  time series. If we perform also the seasonal differentiation  1
sd

sL , we 

group also the complex roots of equation 1sL  . 

In the case of stationarizing  using the removing trend by moving average method, we 

have to find the roots of  
2

0

2 1 0
q

j q

j

L q L




    , corresponding to the differences 

ˆ
t q t qm X  , i.e the reminding stationary time series after removing the moving average of 

order 2 1q  , with opposite sign. Using two times the scheme of Horner, we obtain  

1L    of multiplicity 2. The other roots are the roots of polynomial 
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  
 

 1
2

0

1 2 1

2 2

q
j q j q

j

j j q q
L L L


 



  
  . (3) 

By multiplying  
2

0

2 1 0
q

j q

j

L q L




     by L-1, we can prove that the only multiple 

root is one (multiplicity is two), and we have no other root on the unit circle. Between the 

other 2 2q   roots we can prove that we have at most two real roots. From the theory of 

symmetric polynomials, it results that mainly the other 2 2q   roots are clustered in 

groups of four: jL , 
jL , 1

jL
 and 1

jL
. The two real roots appear if four does not divide 

2 2q  , hence for even values of q. For odd values of q, these solutions are all simple 

and conjugated complex in the above groups of four. If we use a moving average with  

1q   , the roots are  1 2 1L L   . If  2q   , the other two roots are the roots of second 

degree equation 2 3 1 0L L   , having the roots 2

1  and 2

2 , where 1 5

2j  , from 

Fibonacci stream. The roots of polynomial involving moving average of order 2 1q   

with even and odd q are presented in Tables 6 and 7, Appendix A. 

The following structure of solutions has not been proved, but it was checked for 

20,...,6,4q , 100q , 500q  and 1000q , and for  19,..,5,3q , 99q , 499q  

and 999q . For even values of q the real negative roots make a circular crown with the 

radius the absolute values (the other roots have the absolute values between the two 

radius). The minimum absolute value (that of the real root 1 ) increases from 0.38197 

for q=2 to 0.806351 for q=20, 0.94207 for q=100, 0.98493 for q=500 and 0.99174 for 

q=1000. For the minimum argument of complex roots expressed in degrees, the value 

qminarg

360
 decreases from 1.08145 for q=4 to 1.0223052 for q=20, 1.0048508 for q=100, 

1.0009924 for q=500, and 1.0004979 for q=1000. For odd values of q we have not real 

roots (all roots are complex in above groups of four). But the minimum absolute value is 

also increasing on q: from 0.47568 for q=3 to 0.79966 for q=19, 0.94161 for q=99, 

0.9849 for q=499, and 0.99174 for q=999. The expression 
qminarg

180
 decreases from 

1.102567 for q=3 to 1.023379 for q=19, 1.0048986 for q=99, 1.0009944 for q=499, and 

1.0004984 for q=999. 

In the case of exponential smooth we multiply  L  by 
L

L





1

1
, where   is the ratio 

of decreasing the weights of exponential smooth. If   is the inverse of a root of  L , 

we divide   by L1 , otherwise we multiply   by L1 . Of course, in both cases we 

multiply   by L1 . 

The effective decomposition of Xt is made starting from the moment t just before the 

first computed at. For instance, in an AR(p) model first t is p. We decompose this first Xt 

in (1)

tX ,…, ( )p

tX , and ( )j

tb  are the drifted white noises from the initially one multiplied by 

the constants from fractions decomposition. It results a linear regression with the 

coefficients (1)

tX ,…, ( )p

tX . The white noise starts in decomposition of Xt by multiplied by 

the constants, and bt is decomposed in MA(1) like white noises (
 j
tX  is revertible, but 

not necessary stationary). 
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3. APPLICATION 

 

Consider the CPI (Consumer Prices Index) from Buletinul Institutului National de 

Statistică [6] expressed in percentage of current month related to previous, in the period 

January 1991 - February 2017. 

We want to express the time series Xt as in ARIMA model, and next to decompose the 

time series Xt and the white noise at. First we notice that, using the Dickey - Fuller unit 

root test [2] that the time series is not stationary, but the difference 1 ttt XXX  is. In 

the case of AR (p) and MA(q)with , 0,5p q  , not both zero, the representations of Xt are 

presented in Table 1, that follows. 
Table 1 – Representations of Xt for AR (p) and MA(q) time series 

p|q AR(p) MA(q) 

1 -0.38675 Xt-1+at at-0.38675 at-1 

2 -0.48401 Xt-1 -0.25149 Xt-2+at at-0.48401 at-1-0.0643 at-2 

3 -0.52059 Xt-1-0.32189 Xt-2-0.14546 Xt-3+at at-0.52059 at-1-0.06992 at-2+0.0125 at-3 

4 -0.53818 Xt-1 -0.36081 Xt-2 -0.20841 Xt-3            

-0.12091 Xt-4+at 

at-0.53818 at-1-0.08064 at-2+0.00386 at-3-0.02384 

at-4 

5 -0.55532 Xt-1 -0.39035 Xt-2 -0.25955 Xt-3  

-0.19719 Xt-4 -0.14174 Xt-5+at 

at-0.55532 at-1-0.09149 at-2-0.01155 at-3-0.04642 

at-4    -0.04043 at-5 

 

In the AR(p) case we obtain the following results for 5,1p . 

 
Table 2 – Decomposition of Xt for ARIMA(p,1,0) time series 

p Simple fractions for AR(p) Simple fractions for Xt 

1  
LL 38675.01

27819.0

1

72111.0





 

2 
   Li

i

Li

i

43923.024201.01

27549.05.0

43923.024201.01

27549.05.0









 

   Li

i

Li

i

L

43923.024201.01

48207.021899.0

43923.024201.01

48207.021899.0

1

5762.0













 

3 

   Li

i

Li

i
L

54979.002.01

26718.02755.0

54979.002.01

26718.02755.0
48059.01

44899.0












 

   Li

i

Li

i

L

43923.024201.01

48207.021899.0

43923.024201.01

48207.021899.0

1

5762.0













 

4 

   

   

0.15478 0.19809 0.15478 0.19809

1 0.18476 0.57486 1 0.18476 0.57486

0.34525 0.07649 0.34525 0.07649

1 0.45385 0.3544 1 0.45385 0.3544

i i

i L i L

i i

i L i L

 


   

 
 

   

 

   

   

0.44877

1

0.1424 0.0536 0.1424 0.0536

1 0.18476 0.57486 1 0.18476 0.57486

0.13321 0.02782 0.13321 0.02782

1 0.45385 0.3544 1 0.45385 0.3544

L

i i

i L i L

i i

i L i L



 
 

   

 
 

   

 

5 
   

   Li

i

Li

i

Li

i

Li

i

L

59495.032538.01

11077.025203.0

59495.032538.01

11077.025203.0

58036.037203.01

13626.010794.0

58036.037203.01

13626.010794.0

64862.01

28006.0























 
   

   Li

i

Li

i

Li

i

Li

i

LL

59495.032538.01

02947.012731.0

59495.032538.01

02947.012731.0

58036.037203.01

06692.012175.0

58036.037203.01

06692.012175.0

64862.01

10759.0

1

3943.0


























 

In the above table, for instance in the AR(3) model Xt is decomposed in three AR(1) time series 

with the polynomial  1 1 0.48059L L   ,  2 1 (0.02 0.54979 )L i L     and 

 3 1 (0.02 0.54979 )L i L    , and the white noises the white noise at of Xt multiplied by 

0.44899, 0.2755+0.26178 i, respectively 0.44899, 0.2755-0.26178 i.  
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If we consider the non-zero expectation case, the above white noise at is substituted by 

the drifted noise  1t tb a m   , where   2 31 0.52059 0.32189 0.14546L L L L     , 

according Table 1,  hence φ(1)=1.98794. Because m=-0.04757 it results that the drift is -

0.09457, hence we subtract from at the value 0.09457. Using this bt we obtain the same 

three components for initial time series, but bt is multiplied by other coefficients: 0.14574, 

0.17561-0.0486 i, and 0.17561+0.0486 i. In addition, corresponding to the root L=1 in the 

ARIMA case, we have an ARIMA(0,1,0) component Yt such that the difference is bt 

multiplied by 0.50303. The decompositions of initial time series Xt and of the drifted 

noise bt  for ARIMA(0,1,q) are presented in the following table. 
 

Table 3 – Decomposition of Xt at for ARIMA(0,1,q) time series 

q Simple fractions for Xt Simple fractions for at 

1 
L


1

61325.0
38675.0  

1.58565
2.58565

1 0.38675 L



 

2 
L

L



1

45169.0
0643.054831.0  

0.5812 1.5812

1 0.59253 1 0.10852L L
 

 
 

3 
2 0.42199

0.57801 0.05742 0.0125
1

L L
L

  


 

0.6125 0.9556 0.657

1 0.60223 1 0.19056 1 0.10892L L L
  

  
 

4 

2

3

0.6388 0.10062 0.01998

0.3612
0.02384

1

L L

L
L

 

 


 

   

0.2872 0.5433

1 0.7105 1 0.33985

0.3719 0.2236 0.3719 0.2236

1 0.08377 0.30284 1 0.08377 0.30284

L L

i i

i L i L

 
 

 
 

   

 

5 

2

3 4

0.74521 0.18989 0.0984

0.25479
0.08685 0.04043

1

L L

L L
L

 

  


    

   

0.1038

1 0.84007

0.2381 0.196 0.2381 0.196

1 0.21154 0.47124 1 0.21154 0.47124

0.3138 0.1094 0.3138 0.1094

1 0.35392 0.23478 1 0.35392 0.23478

L

i i

i L i L

i i

i L i L




 
 

   

 
 

   

 

 

For instance, the decomposition of ARIMA(0,1,3) is Xt=0.57801 bt+0.05742 bt-

1+0.0125 bt-2+Yt, where Yt is an ARIMA(0,1,0) time series with difference equal to 

0.42199*bt.  

In the following we consider the model ARIMA(p,1,q), where the size of the ARMA 

model, the value of p+q, is constant. The values of  L  for 4,3,2,1p   are 

2 3 41 0.05275 0.07812 0.04559 0.11309L L L L    , 2 31 0.0486 0.48217 0.16583L L L   , 
21 0.55701 0.10944L L  , respectively 1 0.92335L . The corresponding values of  L  

are 1 0.53855L , 21 0.54042 0.41813L L  , 2 31 0.07329 0.38463 0.10279L L L   , and 
2 3 41 0.61752 0.59303 0.21334 0.14483L L L L    . 

Consider now 5p q   with 1 4p  . The results for decomposition of the 

ARMA(p,q) time series Yt and of the initial ARIMA(p,1,q) time series Xt are presented in 

the following table. 
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Table 4 – Decomposition of Xt  and Yt for ARIMA(p,1,q) time series with p+q=5 

p Simple fractions for Yt Simple fractions for Xt 

4 

   

   

0.38451 0.19825 0.38451 0.19825

1 0.42136 0.35245 1 0.42136 0.35245

0.1155 0.15024 0.1155 0.15024

1 0.44774 0.41748 1 0.44774 0.41748

i i

i L i L

i i

i L i L

 
 

   

 


   

 

   

   

0.44896

1

0.16224 0.00366 0.16224 0.00366

1 0.42136 0.35245 1 0.42136 0.35245

0.11328 0.12348 0.11328 0.12348

1 0.44774 0.41748 1 0.44774 0.41748

L

i i

i L i L

i i

i L i L




 
 

   

 


   

 

3 

   

0.54943 0.0823 0.54943 0.0823

1 0.61666 0.29215 1 0.61666 0.29215

0.09886

1 0.84791

i i

i L i L

L

 
 

   



 

 

 

0.13662 0.15613 0.0767

1 1 0.61666 0.29215

0.15613 0.0767 0.55113

1 0.61666 0.29215 1 0.84791

i

L i L

i

i L L


 

  




  

 

2 

7.64178 0.34688
8.2949 0.93924

1 0.15394 1 0.71095
L

L L
   

 

 

0.40473 1.39037 0.14414
0.93924

1 1 0.15394 1 0.71095L L L
  

  
 

1 
2 3

0.2926
1.2926 0.576

1 0.92335

0.06118 0.15685

L
L

L L

   




 
2

0.34644 0.14047
0.79403

1 1 0.92335

0.21803 0.15685

L L

L L

  
 



 

 

The corresponding decompositions of the white noise in the ARMA and ARIMA 

cases are presented in Table 6, that follows. 

 
Table 5 – Decomposition of at for ARIMA(p,1,q) time series with p+q=5 

p Simple fractions for ARMA(p,q) Simple fractions for Xt 

4 
2 3

1.47457
0.42182 0.39645

1 0.53855

0.25558 0.11309

L
L

L L

  




 
2 3 4

1.94412
1.58556 0.28694

1 0.53855

0.14087 0.14249 0.11309

L
L

L L L

   


 

 

3 

0.18107 0.17836

1 0.43061 1 0.97103

0.64057 0.3966

L L

L

 
 



 
2

0.60158 0.00532
0.40374

1 0.43061 1 0.97103

0.24397 0.3966

L L

L L

  
 



 

2 
 

 

0.117357 2.82097

1 0.38772 0.02902

0.117357 2.82097 0.65287

1 0.38772 0.02902 1 0.69415

i

i L

i

i L L




 




  

 
 

 

1.17618 10.09684
1.0647

1 0.38772 0.02902

1.17618 10.09684 0.28767

1 0.38772 0.02902 1 0.69415

i

i L

i

i L L


  

 




  

 

1 

 

 

0.20482 0.09338

1 0.15477 0.38077

0.20482 0.09338

1 0.15477 0.38077

0.6087 0.01835

1 0.78463 1 0.89667

i

i L

i

i L

L L




 




 


 

 

 

 

0.60294 0.28271

1 0.15477 0.38077

0.60294 0.28271

1 0.15477 0.38077

0.16708 0.03881

1 0.78463 1 0.89667

i

i L

i

i L

L L




 




 


 

 

 

CONCLUSIONS 

 

In [2,3,4] the decomposition of a time series in seasonal component, trend and 

stationary has been performed using for instance moving average. Analogously, if we use 

the differentiation and/ or seasonal differentiation we can group the root one and the 

complex unit root for seasonal differentiation. Other decompositions are performed due to 

economic reasons, as the decomposition of GDP in [1,5]. An open problem is if the 

economic decomposition can be naturally performed by grouping this paper 

decomposition of time series. 
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We have said “similar to ARMA(2*m,m)” instead of ARMA(2*m,m) in Section 2, 

because the roots of numerator are not necessary in absolute value greater than one. For 

instance, in the case of AR(5), if we add the corresponding AR(1) components 

 Li

i

54979.002.01

26718.02755.0




 and the conjugate, we obtain 

     LiLi

L

54979.002.0154979.002.01

23847.021588.0




, which has obviously roots for 

denominator greater than one in absolute value, but the numerator has the root 

L=0.90523! For MA(q) with 5,2q  the quote of degree q-1 has in all four cases in Table 

3 roots greater than one in absolute value. An open problem is if this is a rule, or it 

happens in our example and other ones. 
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APPENDIX A. ROOTS FOR MOVING AVERAGE 
 

Table 6 – Roots for even values of q 

 

q Real root 1  The other absolute values 1  The other angles in degrees 

2 -0.38197   

4 -0.52031 0.55242 83.22129 

6 -0.60296 0.65776; 0.61432 66.52096; 56.51432 

8 -0.65882 0.72426; 0.68255; 0.66423 85.88092; 50,73123; 42.88701 

10 -0.69947 0.76948; 0.73145; 0.71223; 0.70249 
76.67192; 69.20316; 41.01439; 

34.58262 

12 -0.73058 
0.8021; 0.76772; 0.74918; 0.73821; 

0.73244 

87.02103; 63.84469; 57.98187; 

34.42691; 28.98308 

14 -0.75264 
0.82669; 0.79555; 0.77812; 0.76717; 

0.76031; 0.75649 

80.1066; 74.88039; 55.00913; 

49.90537; 29.66504; 29.94881 

16 -0.77539 
0.84588; 0.8175; 0.80126; 0.79065; 

0.78351; 0.77887; 0.77624 

87.66116; 70.36931; 65.72646; 

48.32439; 43.80988; 26.06156; 

21.90285 

18 -0.79215 
0.86126; 0.83525; 0.82012; 0.81001; 

0.80291; 0.79796; 0.79466; 0.79277 

82.33238; 78.11198; 62.74497; 

58.57341; 43.08966; 39.04454; 

23.23933; 19.52106 

20 -0.80635 

0.87389; 0.84988; 0.83578; 0.82619; 

0.81929; 0.81426; 0.81066; 0.80822; 

0.80621 

88.07264; 74.2845; 70.44565; 

56.61257; 52.82802; 38.87899; 

35.21603; 20.96897; 17.60727 
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Table 7 – Roots for odd values of q 

q The absolute values 1  The angles in degrees 

3 0.47568 54.41846 

5 0.61161; 0.57041 78.82098; 33.58896 

7 0.69447; 0.65137; 0.63517 73.19168; 57.55775; 24.36856 

9 0.70893; 0.68982; 0.68159; 0.74885 84.13503; 54.44701; 45.35669; 19.14011 

11 0.78702; 0.75086; 0.73188; 0.72136; 0.71657 
78.89304; 69.4227; 47.30958; 37.43245; 

15.76617 

13 0.8152; 0.7825; 0.7645; 0.7535; 0.74701; 0.74396 
86.06313;67.06126; 59.0979; 40.22503; 

31.86881; 13.40661 

15 0.83685; 0.80714; 0.7903; 0.7795; 0.77244; 0.76812 
81.68513; 74.92242; 58.32909; 

51.45025; 34.99151; 27.74666; 11.66294 

17 
0.85397; 0.82683; 0.81115; 0.80078; 0.79364; 

0.7888; 0.78577; 0.78431 

87.0486; 72.27458; 66.33853; 51.6154; 

45.55699; 30.96595; 24.56959; 10.32147 

19 
0.86786; 0.8439; 0.8283; 0.81844; 0.81442; 0.80643; 
0.80294; 0.80073; 0.79966 

83.3456; 78.10145; 64.81504; 59.52108; 

46.29108; 40.87608; 27.7727; 22.04581; 
9.25726 
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Abstract: Modern military actions cannot be conceived in the absence of reasonable scientific 

approach. The selection of the best course of action (CoA) for the achievement of targeted 

objectives, while taking into account the available resources and the configuration of the internal 
/ external background, is an extremely complex activity that is carried out under conditions of 

uncertainty and time constraints. Optimization of military actions as well as the implementation 

of efficient decision-making solutions is a matter of prime importance in the current battlefield 
configuration and it implies a rigorous mathematical apparatus. In this article, we analyze the 

importance of detecting/adjusting mathematical methods in accordance with the new technologies 

and armaments used in contemporary confrontations, using a particular case in the field of 

aviation. 

 
Keywords: decision-making, aviation, military actions, mathematical methods  

 

1. INTRODUCTION 

   

The military phenomenon is one of the social phenomena that best illustrates the idea 

of development - the forces and the whole complex of Tactics, Techniques, Procedures 

(TTPs) are subjected to dramatic changes in the context of the fundamental processes of 

social evolution. The causes of transformations are multiple and diverse, corresponding to 

the nature of society itself, and they can be found in any of its components. 

Decryption of changes and trends occurring at geopolitical and geostrategic level and 

the awareness of possible developments in the field of military actions, especially those 

which are conducted in the airspace, constitute actions which are meant to provide inputs 

for developing a robust, resilient and versatile air force able to act within a fluid and 

unpredictable security environment. Nowadays military actions take place in an 

increasingly complex operation area which usually involves a lot of entities (armed 

forces, different factions, local population, NGOs, civilian agencies, economic agents 

etc.), many of them having divergent interests. In order to succeed, decision-makers need 

to adopt a comprehensive approach and they must act quickly and "surgically". There is a 

very short time for analysis, evaluation and decision-making and there is no place for 

error. [4, 5, 6] 

Modern warfare, regardless of its form, type or magnitude, cannot be conceived 

without the active presence of the air force (aviation, radars, artillery / SAMs etc.) 

capable of executing rapid, surprising and destructive strikes, of generating strong and 

long-lasting effects on the enemy's ability to wage war. It can also disrupt enemy's actions 

by stealth, maneuverability and precise actions.  
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Another element which is strongly connected with the air force is represented by the 

advanced technologies. Air power can be considered one of the finest products of 

technological revolution initiated at the dawn of the 20
th 

century. The intrinsic connection 

with technology allows air forces to exploit the benefits of outer space. The actions taken 

in a three-dimensional space provide air component with greater freedom of action than 

the other components (land and maritime). 

Military actions are, by definition, planned, organized and conducted by military 

structures. Decision is the essence of military action management. In the complex and 

contradictory world in which we live, adopting and implementing high-performance 

decisions is increasingly difficult and at the same time necessary. [2] The greater our 

world's complexity and contradictions are, the more effective our decisions should be. 

Any mission aims to achieve a goal set by the higher echelon or resulting from the 

commander's plan.   

 

2. ASPECTS REGARDING THE EFFECTIVENESS OF ACTIONS IN AVIATION  

 

Generally speaking, the effectiveness of our actions obviously depends on the 

resources used and the quality of our decisions. In the broadest sense, this means that our 

ability to produce a certain effect on others' behavior (when we refer to human action, the 

effect is anticipated to become a goal) is based upon our ability to plan our future actions, 

to allot the needed resources and to act in accordance with our plan but also by taking into 

account the changes that occur in reality. We should take into account some restrictions 

or limitations: available resources, TTPs to use, time etc. Consequently, sometimes a 

normative and not a descriptive approach is needed, so formal methods and models are 

needed in order to set up your actions on scientific bases. 

Most of the combat actions are designed to produce a desired level of attrition in the 

enemy's forces and logistics or to destroy them. Usually, many targets are located inside 

the enemy's territory (beyond the Forward Edge of Battle Area - FEBA) and this fact 

increases the uncertainty level regarding the final effects on target. 

A course of action (CoA) which involves air strikes upon a major objective located in 

the depth of the enemy's territory implies the fact that the aircraft(s) will cross areas 

which pose different levels of hostility, as follows: 

- the flight within territory controlled by own troops or allies ("the friendly area"), an 

area which has a very low probability of danger, basically 0 %; 

- the flight within territory controlled by enemy forces ("the hostile area"), an area 

which comprises many Surface Based Air Defence (SBAD) threats, so the probability of 

having losses is getting higher; 

- the flight within the district where the target is located ("the dangerous area"), an 

area which is strongly defended by SBAD systems, so this area has a high level of risk, 

and the probability of getting losses cannot be neglected (we should also notice that this 

phase includes preparatory maneuvers and the air strike itself).      

If we analyze the losses suffered by our own forces in every phase of the mission we 

shall conclude that it is unprofitable, from the resource perspective, to get the aircraft to 

the target and not to use the load on board. [1] Friendly air forces may suffer certain 

losses caused by the enemy's reaction, which is carried out either with its own air forces 

or by GBAD means (SAMs or anti-aircraft artillery - AAA). Considering this, we can 

deduce a probability of reaching the target which is represented by the following 

relations:    

 
                                                       (1) 
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where: 

Q - is the probability that the a/c will encounter the target and will launch the strike 

against it; 

QSAM - is the probability that the a/c will get into the district where the target is located 

taking into account the SAMs reaction; 

QAAA - is the probability that the a/c will get into the district where the target is located 

taking into account the antiaircraft artillery reaction; 

QAF - is the probability that the a/c will get into the district where the target is located 

taking into account the enemy air forces reaction. 

In order to establish which variables are relevant in the decision-making process, the 

air force staff must establish certain criteria for evaluating the strikes' efficiency. Based 

on these criteria the staff proceeds to a cost/benefit analysis or a similar method and then 

it will design the best CoAs. The commander will select the one which best fits his 

intention. Speaking of criteria, the most used criteria are: 

- the amount of damage produced to the target (percentage and quantitative); 

- the amount of resources (number of aircraft, manpower, fuel etc.) necessary to fulfill 

the mission. 

Papers that deal with this topic provide methods of calculation for some of these 

criteria. [3] 

a) The average percentage of losses incurred by the enemy when acting against it 

with more than one aircraft. 

a1) When the attack is carried out by aiming the constituent elements of the group of 

targets, the average percentage of enemy's losses, denoted by W*, is calculated by the 

following equation: 

 
                                                            (2) 

where: 

N - the number of aircraft performing the attack on the group of targets; 

Nt - the number of targets (elementary objectives) within the group of targets; 

W - the probability that an aircraft destroys, throughout a single attack, an element within 

the group of targets. This variable depends on the target's features (dimensions, degree of 

vulnerability) and the features of the ammunition used; 

Nat - The number of attacks carried out by each aircraft; 

Q - The probability that the aircraft will reach the target district in order to execute the 

attack. It depends on the enemy's retaliation means (air force, artillery/anti-aircraft 

missiles etc.). It is determined by the (1) equation. 

a2) When the attack is conducted against a group of targets considered as a whole, so 

that the elements located in the vulnerable zone of the group of targets are considered to 

be destroyed, while the others are not, the average percentage of losses, denoted by MN, is 

calculated by the relation: 

 = 1 –  (3) 

where: 

N - The number of aircraft performing the attack on the group of targets; 

M - The average percentage of damage when the group of targets is attacked by a single 

aircraft; 

M =  *  (4) 

where: 

Mx, My - mean values of the coverage percentage determined by area of destruction (first-

order first moment), calculated as follows: 
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 = ; 

 = ; 

with:  

 =   ;   

 =   ;   

 =   ; 

  =   ;   

where: 

Tx, Ty - the dimensions of objective (target), approximated by a rectangle; 

Lx, Ly - the dimensions of the area of destruction, approximated by a rectangle; 

Ex, Ey  - The probable deviations (probable error) of the center of the area of destruction 

relative to the center of the objective (target); 

 - the Laplace transformed function; 

- 0,476936. 

b) The required number of aircraft in order to achieve an average predetermined 

percentage of losses for a group of targets, denoted by N, is calculated as follows: 

b1) When the attack is carried out by aiming the constituent elements of the group of 

targets, we use the equation: 

N =  (5) 

where: 

P1 - The predetermined average percentage of the damage caused to the objective (target); 

Nt - The number of targets (elementary objectives) within the group of targets; 

W - the probability that an aircraft destroys, on a single attack, an element within the 

group of targets; 

Nat - The number of attacks carried out by each aircraft; 

Q - As it was shown above. 

b2) When the attack is conducted against a group of targets considered as a whole, we 

use: 

N =  (6) 

where: 

P1 - The predetermined average percentage of the damage caused to the objective (target); 

M - The average percentage of damages when the group of targets is attacked by a single 

aircraft. 
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3. AVIATION IN COMPLEX ACTIONS 

 

Modern aircraft are characterized by advanced fighting capabilities, including fire 

power, stealth technologies, radar and electronic warfare (EW) equipment and above all, 

the technical and tactical performances which allows it to carry out complex actions in a 

complex environment. In order to determine some efficiency indicators, we will use a 

hypothetical situation: 

3.1 Problem formulation 

In a district (hereinafter referred to as objective) there are several constituent elements 

(hereinafter referred to as targets). The target is attacked by several aircraft, each of 

which is equipped with several types of weaponry (combat cargo).  

For tactical (objective and target characteristics, attack procedure) and technical 

(launch / firing parameters) reasons, the battle load will not be launched all at once, the 

aircraft repeating the attack. It is required to determine the main efficiency indicators 

(average damage caused to the enemy, the number of aircraft required to carry out the 

mission). 

3.2 Working hypotheses 

In order to compute the calculations, we set out some simplifying hypotheses that will 

not influence the final result: 

1. We consider that the targets are evenly distributed within the objective, which 

means that in a Z area (representing z % of S - the total area of the objective) there will be 

a number of T targets (representing z % of NT - total number of targets within the 

objective), so T is proportional to Z. 

2. We consider that the attack will be carried out by means of 2 types of weapons / 

battle load: 

- Type 1 produces effects on a large surface (all targets in the "vulnerable" area are 

destroyed); 

- Type 2 produces point effects (only the directly hit target is destroyed). 

From the probabilistic point of view we define: 

- Ei - the event consisting of hitting and damaging the target, i.e. the destruction of the 

appropriate targets, using the type of weapon / battle load; 

- P(Ei) - the probability of producing Ei event. 

3. We solve the problem using the above mentioned equations: 

- for Type 1 weapons - equations (2) and (5); 

- for Type 2 weapons - equations (3), (4) and (6). 

We also add the following points: 

- each aircraft performs successive attacks, each attack is carried out with a single type 

of weaponry; 

- during the first attacks, type 1 weapons are used, but the following ones are carried 

out with type 2 weapons; 

- events Ei are compatible, meaning that targets are destroyed whether they are hit by 

Type 1 weapons or by Type 2 weapons. 

3.3 Solution 
Whether or not the results of the attack are known immediately after the use of a 

specific type of weapons determines two situations that we will analyze in turn. 

Case I - The results of the attack cannot be immediately known (the destroyed targets 

cannot be identified), so the following attacks can also be directed against targets that 

have already been hit. 
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In this case, events E1 and E2 are independent, meaning that even if a target was 

destroyed during the first attack, this does not mean that there will be no further attack on 

it. Thus, 

P( P( P( P(  

 

    (7) 

where: 

P (E1, E2) - The probability of destroying the target using both types of weapons. 

Considering the above and noting P (E1, E2) with Pp, it results: 

 =  (8) 

By substituting and making calculations, based on the above equations, we obtain: 

 =  = 

     =  =  

     = 1– + (1– (1–  = 

     = 1– +  =  

     = 1–  =  

     = 1–  =  

     = 1–  =  

     = 1   

We thus obtained a relation to determine the average percentage of enemy's losses 

when two types of armaments (Type 1 and Type 2) are used: 

 = 1–  

 

(9) 

The average number of destroyed targets is then determined by: 

 
 

(10) 

From equation (9) we obtain: 

 1 -  = ,   

where A =  

Then, by applying the logarithm, 

 =  

                    = =  

                    =  (  =  

                    =  (  

Thus, we obtain the N - the required number of aircraft in order to produce Pp average 

losses to the enemy. 
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N = , or  

N =  

 

(11) 

Case II - The conditions allow us to find out the outcome of the attack immediately, 

we can identify the destroyed targets, so the following attacks will be directed only on 

targets that have not yet been destroyed. 

Identification of the main efficiency indicators will be done by means of the following 

algorithm: 

- we calculate the average number of targets destroyed as a result of the attack carried 

out with Type 1 weapons (denoted by M
(1)

). For the symmetry of the notations, we will 

note with N
(1)

) - the initial number of targets (previously noted with Nt); 

 
 

(12) 

- we calculate the mean number of targets that have not been destroyed after the attack 

was carried out with Type 1 weapons (denoted by N
(2)

). For these targets there will be 

used the Type 2 weapons. 

 

 =  

         =  =  

         = (1  =  

         = (1 – (1-(1 - M)
N
)) =     

         =  Nt MN  1
)1(

           
                                         

 

 
(13) 

- we calculate the average number of targets that were not destroyed after the attack 

carried out with Type 2 weapons (denoted by M
(2)

); 

 
(14) 

- we calculate the average number of targets destroyed after the final attack (denoted Mt); 

 
 (15) 

Using relations (12), (14) and (15), it results: 

 =  

     =  = 

     =  =  

     = ) = 
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     = ) =  

     =  

 

(16) 

We divide both members of this last relation by Nt
(1)

). But Mt / Nt
(1)

) = Pp. We obtain 

successively: 

 

1 –  

 

 

 

Dividing by N and replacing  with (equation (13), we obtain: 

 –  (17) 

Since this equation is more difficult to solve, we will form 2 functions of variable N: 

 

 –  
 (18) 

 

                                                                  

(19) 

Finding N can be done either by the graphical method, at the intersection of the graphs 

of the two functions f1(N) and f2(N), or by numerical methods, using the computer. We 

used both methods and the results are highlighted in Figure 1. For the numerical 

determination of N, we considered 4) case from Table 1 and we used the Maple 13 

software. This software also helped us to provide the graphs for the functions. 
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FIG. 1. Finding N by graphic method 

 

Example (simplified, without affecting the final results) 

There are 100 tanks in a district. We have to determine the required number of aircraft 

in order to destroy 2/3 (67) of them using 2 types of armament. 

The results are shown in Table 1 (Pay attention to the order of magnitude!): 

 
Table 1. The required number of aircrafts in certain conditions 

The type of weapons used The required number of aircrafts 

1) Type I weapons (ammunition) 42 

2) Type II weapons (ammunition) 112 

3) Type I and II weapons (ammunition), without "fire transport" 31 

4) Type I and II weapons (ammunition), with " fire transport " 25 

 

CONCLUSIONS 

 

The evolution of the air force is strongly related to the technological and scientific 

development as well as to the evolution of the regional and global security environment. 

Accordingly, the future of air force can only be designed in the context of the European 

and Euro-Atlantic security system. In such a system there are many interdependencies 

which are often difficult to quantify. It is the duty of military specialists to study, analyze 

and propose measures to decision-makers to effectively employ the air force in future 

operations.  

Military actions are dynamic, and each mission is different and unrepeatable. In turn, 

advanced technologies radically change the means of military action. All of these require 

that decision makers use appropriate methods (simulation, modeling, conceptualization 

etc.) in order to base the decisions they make on a scientific foundation. 
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With regard to establishing the optimal need for aviation forces, we have found that 

the existing manuals / regulations contain methodologies that do not solve all the possible 

situations. 

In this paper we have obtained a system of relations that allows us to find out the 

solution to the formulated problem, as follows: 

- the percentage of average losses produced to the objective is given by relation (9); 

- the average number of destroyed targets is given in Case I (without the immediate 

identification of damaged targets) by the relation (10), and in Case II (only the previously 

undamaged targets are attacked) by relation (16); 

- the number of aircraft required to produce certain predetermined losses to the 

objective is presented in Case I by relation (11), and in Case II by relation (17). 
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1. INTRODUCTION 

 

Transport have a very important role in the socio-economic development of a country 

because it facilitates the transportation of passengers and goods to the point of 

destination.  

Air transportation is a civil or military aviation branch which deals with the transport 

of goods and passengers. This type of transport is preferred by those who have the 

primary purpose of moving as quickly as possible from one point to another, this being its 

essential feature, but also the precise schedule for any time of the year regardless of day 

or night. For this purpose both mixed-duty aircrafts for passengers and goods, as well as 

cargo aircrafts, are used. Airplanes can be used on a regular basis - regular traffic, or 

irregular traffic, which means contracts between airlines and different recipients who 

want to operate the rented airplanes for a specified period. The most important airports 

based on the number of passengers and quantity of goods are in London, Tokyo, New 

York, Los Angeles and Frankfurt. 

If we are talking about the economic aspect of air transport, everything has a cost, 

therefore, for a quantity of cargo or for a certain number of passengers transported we 

have a price that varies if the quantity of the cargo or the number of passengers changes. 

This is why the price per passenger or per ton of product may vary. In this case, we can 

say that the cost of the transport can be described by a concave nonlinear function, i.e. the 

cost will depend nonlinearly on the number of passengers or on the weight of the cargo 

being transported.  

The air transport network consists of paths and nodes where the connections between 

the nodes are made by means of air transport such as airplanes and helicopters.  
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The network that starts from a node (airport) and allows the transport of passengers 

and / or cargo to another node, but can also use other airports as transit nodes, may be 

formalized by graph theory means as a  mathematical model of a standard single-source 

transport network shipping with one destination and intermediate points. A single-source 

transport network with several destinations describes the real situation when goods and 

passengers are transported to several nodes using nodes of transit. 

 

2. PRELIMINARIES 

 

First, let us expose notions that a necessary for studying the transportation problem 

with concave cost functions. 

Transportation network: A transportation network 2 is an oriented graph 

, without loops, which satisfies the following properties: 

1. There is a vertex (source)  which has only outgoing edges; 

2. There is a vertex (destination, sink)  which has only incoming edges; 

3. For each arc it is associated a value , for any , named capacity of the arc. 

The cases with several sources and / or destinations can be easily modelled. To reduce 

such models to the standard transportation network we have to add a super-source 

connected to each of the original sources. Its capacity will be the total of the product 

amount from the original sources. We can also add a super-sink connected to the original 

destinations, its capacity will be equal to the total capacity of all destinations. 

Generally, we can set for each edge a value that describes the maximal size or quantity 

of the goods which may be transported, distances between nodes, the time to cover the 

distance or the price to transport the cargo. In this paper, a piecewise function is assigned 

to each edge  describing the  transport costs and depending nonlinearly on the quantity of 

the goods being transported. 

Flow: A flow in a network is a function  which satisfies the following 

properties: 

1. Capacity constraint: For all  the condition  is satisfied; 

2. Skew symmetry: For all  the condition  is 

satisfied; 

3. Flow conservation:  , where  is the set of 

edges that enter   and  - that exit  

Capacity constraints limit the quantity that can be transported along an arc. In the 

context of this paper, the capacities are equal to , i.e. an unlimited quantity can be 

transported along an arc. 

Skew symmetry assumes that for each node the quantity of product entering the node 

equals the quantity that exits it, i.e. their modulus (absolute values) are equal. 

Flow conservation implies that the whole quantity of product that exits from the 

source reaches the destination, i.e. there are no losses along the arcs.  
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It is also impossible to have a surplus in the quantity when reaching the destination, 

because that would imply that the intermediate nodes also produce goods. 

Concave function: A function  is concave on an interval, if for all  and  from this 

interval and for all  the following is true: 

. 

In this paper, concave functions describe the cost of the product shipping along the 

arcs. These functions are non-increasing piecewise-linear functions defined on the 

interval [0; +∞] that initially describes a rise from 0 to some value which then become a 

constant value. This means that the transport cost raises with the increase of the product 

flow only up to a fixed value, then the expenses are the same for any product quantity 

being transported. 
 

3. PROBLEM FORMULATION 

 

Let us consider the network transportation problem described by the graph 

, ,  with the source  and the sink . A real 

bounded function  is defined on the finite set of its vertices  and non–

decreasing piecewise-linear  concave cost functions  , defined for each arc , 

which depend on flow. We must find a flow  for which the function 

 has the smallest value, i.e. where  is 

the set of flows admissible in , which means that it satisfies the system: 

 

 
where  is the set of edges that enter and  -  that exit . 

 

1. In the formulated problem for every intermediary node the flow is conserved 

which means that: 

 

                         
where  is the net capacity. 

 

Therefore, the transportation problem may be formulated as it follows: 

 
where  is defined by the function: 
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2. A particular case of this problem is the transportation network with a source and 

several destinations. The function will then be described by the system: 

 

 
where the set of vertices  is the set of destinations. For every  it is known the 

necessity  of the point . 

The transportation problem may be formulated as it follows:     

where  is defined by the system: 

 

 
 

The formulated problem is NP-hard because the function is a sum of piecewise-linear  

concave functions, which means that there are no efficient (polynomial) algorithms to 

solve this problem. That’s why our aim is to find an algorithm that will find a good 

solution as efficiently as possible.  

 

4. WAYS OF SOLVING THE PROBLEM 

 

4.1 Applying a known algorithm: In [1] an algorithm for solving the non-linear 

transport problem is described by reducing the solution to a problem of linear 

programming for which polynomial algorithms are known. Fig. 1 shows the block 

diagram describing the algorithm. 

 
FIG.1. Block diagram for solving the TP 
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The Mathematica System and the Wolfram Language [3] make it much easier to 

implement the algorithm comparing with other languages and systems. The code is 

compact, easy-to-read, it is easy to define new variables and functions. 

Next, we will explain how we applied the Wolfram Language to solve the problem 

based on the following example. 

The description of the transport network is easily accomplished using the standard 

Graph[] function to which all pairs of connected vertices describing the direction of the 

edges are transmitted as parameters, see following Fig. 2 (a): 

 

 
(a)  

(b) 

FIG. 2. Description of the transportation network 

As a result of executing the Graph[] function we obtain the network represented in 

Fig. 2. (b), which is it graphical representation. Knowing the transportation network, the 

IncidenceMatrix[] function allows us to obtain the incidence matrix of the graph that 

describes the transportation network and permits to construct a system of constraints for 

the formulated problem. 

As mentioned above, with each arc is associated a piecewise-linear concave function 

that is described generally as in Fig. 3 (a) and (b) using the Wolfram Language. 

 

 

 

 
 

(a) 
 

(b) 

FIG. 3. Description and graphic representation of the piecewise-linear function 

In order to obtain an initial solution with which the program starts according to the 

block diagram of  Fig. 1, we use the FindInstace[] standard function which solves the 

system of equations, provides the non-negative solutions, and as a result submits the set 

of possible solutions on the basis of which a linear objective function is obtained.  

LinearPrograming[] is a standard function that solves the problem of linear 

programming that consists in minimizing the obtained linear objective function on the 

same system of constraints. In Fig. 4 we have the code of the implemented algorithm. 
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FIG. 4. The algorithm code in the Wolfram Language 

4.2 Using the standard Wolfram language functions: We can use the standard 

functions Minimize[] and  NMinimize[], that can find a global optimum, and 

FindInstance[], for finding a local solution, in order to solve the formulated problem, 

which is in fact an optimization problem of nonlinear programming that consists in 

minimizing of an objective function that is described as a sum of concave piecewise-

linear concave functions and satisfies the constraints described by a system of linear 

equations and constraints of non-negativity. 

The prototype for the function Minimize[{f, cons}, {x, y, ...}] suggests that as input 

data we have the objective function and the system of linear constraints. It is used to 

obtain the exact global solution of the optimization problem that uses linear programming 

methods, the Lagrange multiplier method, integer programming methods and other  

symbolical and analytical methods, which involves obtaining exact solutions. 

The prototype of the function NMinimize [{f, cons}, {x, y, ...}] suggests that, as input, 

we will have the objective function and the constraint system. It is used to obtain a global 

solution as a numerical value through the use of linear programming methods, Nelder-

Mead, random search, i.e. numerical methods, which implies obtaining a result obtained 

by a series of approximations. We can use the attribute Method to select the method, e.g. 

DifferentialEvolution, RandomSeach, SimulatedAnnealing, Neldermead, by which the 

function NMinimize[] used to solve the problem. 

The prototype of the function FindMinimum{{f, cons}, {x, y, ...}] suggests that as input 

it have the objective function and the system of constraints. It is used to obtain a local 

solution, that is a result that starts from a point in the region defined by the constraints. 

We can use the attribute Method to select the method, e.g. PrincipalAxis, InteriorPoint, 

QuasiNewton, ConjugateGradient, by which the function FindMinimum[] solves the 

problem. 

Symbolic computation or, in other words, the use of computational algebra that is 

based on symbols that represent mathematical concepts, operates with polynomials, 

rational functions, trigonometric functions.  
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The results of symbolic algorithms are not affected by approximation errors that 

influence the result in numerical computation that operates with numbers. 

Using the standard Minimize[] and NMinimize[] functions to solve the problem, the 

user does not know the method that was applied by the Wolfram Language. If we want to 

solve a series of problems and want to be sure which method was used then the Method 

option followed by the name of the requested method can be used. In Fig. 5 it is given the 

program that solves the problem using Minimize[] without specifying the method to be 

applied and as a result we have the solution and the value of the function at the point. 

 

 

FIG. 5. Application of the function Minimize[] to solve the TP in the Wolfram Language 

In order to be able to control and compare the execution time of the algorithm, the 

AbsoluteTiming[] standard function, that returns the runtime of the program in seconds, is 

used. 

We present a list of networks of different sizes and the computation time for each 

algorithm in Tab. 1. 

 
Table 1. Computation time of the method (seconds) 

Nr. 

Ord. 

Nr. 

Nodes 

Nr. 

Edges 

Algorithm Minimize NMinimize FindMinim 

1 4 6       0.000279      0.17     0.2      0.18 

2 6 10 0.000360 3.02      0.38      0.12 

3 7 14       0.000492 108.45 0.61 0.19 

4 8 16 0.000468 345.61 2.09 0.19 

5 8 20 0.001135 10386.50 1.96 1.75 

 

A substantial rise in the computation time can be observed when the function 

Minimize[] is used, though this method gives the best solution as can be seen in the 

diagram below. 
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FIG. 6. The number of optimal solutions for solving TP using different methods  

CONCLUSIONS 

 

We formulated a number of problems of different sizes, modelled on different 

networks with different number of edges and nodes. All were solved using the algorithm 

from the block scheme in Fig.1 and then using the standard functions Minimize[], 

NMinimize[], FindMinimum[]. The computation time and results of the programs has 

been compared for each of the used methods. With these data we can expose the 

following conclusions: 

 The solutions obtained with the proposed algorithm is as good as Minimize[] or at 

least not worse than NMinimize[]; 

 If we could choose another initial solution, the algorithm may give a better 

solution  for the majority of problems; 

 Half of the solutions obtained by applying the proposed algorithm are as good as 

the solutions from Minimize[], while only 25% of the solutions obtained by NMinimize[] 

are as good as Minimize[]; 

 The proposed algorithm’s computation time is the fastest. It is smaller than that of 

Minimize[], which needs more time for every new edge. E.g., for a network with 8 nodes 

and 20 edges it needs 3 hours, while our algorithm only about some milliseconds; 

 FindMinimum[] returns a solution very fast, but it is rarely the optimal solution; 

 If the problem is to get a good solution in a short time, our algorithm meets these 

conditions; 

 This is an heuristic algorithm, it doesn’t have a rigorous proof and must be 

improved to be used on a larger array of problems. 

An improvement of this algorithm to give the optimum solution in all the cases 

depends on the initial solution generation, from which the algorithm starts, and may be 

realised efficiently through parallel computation. Applying an array of different initial 

solutions and taking the best one as the initial one, even if the computation time of the 

algorithm will increase it will increase considerably slower than using the function 

Minimize[]. 
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1. PROBLEM FORMULATION 

 

Let L  be a stochastic system with finite set of states V , 
 V . The system L  

starts its evolution from the state Vv  with probability )(* vp , Vv . Also, at every 

step t , the system L  passes from the state Vu  to the state Vv  with probability 

),( vup  and real transition cost ),( vuc , that do not depend on t . 

We assume that a sequence of states ),,,( 21 mxxxX   is given and the system L  

stops transitions as soon as the states mxxx ,,, 21   are reached consecutively in given order. 

We denote by C  the evolution outcome of the system L , i.e. 







Evu

vucC
),(

),( , where 

E  is the set of transitions that compose the evolution of the given system L . 

The system L  represents a Markov process with set of states V , initial distribution of 

the states 
 Vvvpp  ))(( ** , probability transition matrix 

 Vvuvupp  ,)),((  and real 

transition cost matrix 
 Vvuvucc  ,)),(( . One more thing that is specific to the system L  

is the property to have a stopping rule, represented by final sequence of states X . 

Several interpretations of these extended Markov processes were analyzed in [1], [6] and 

[7]. Also, polynomial algorithms for determining the main probabilistic characteristics of the 

evolution outcome of the given stochastic system L  were proposed. 

Next, the following game  , that represents a generalization of the games defined in [2] 

and [3], is considered. Initially, each player l , 1,0  rl , defines his stationary strategy, 

represented by one transition matrix 
 Vvu

ll vupp  ,

)()( )),(( , 1,0  rl . The initial 

distribution of the states is 
 Vvvpp  ))(( ** . The game is started by first player 0 .  
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At every moment of time, the system L  passes consecutively to the next state according 

to the strategy of the current player. After the last player 1r , the first player 0  acts on the 

system evolution and the game continues in this way until the given final sequence of states 

X  is achieved. The winner is the player who acts the last on the system evolution. 

Our goal is to study the game outcome C , knowing the initial distribution of the states 

 Vvvpp  ))(( ** , the real cost transition matrix 
 Vvuvucc  ,)),(( , the stationary strategy 

 Vvu

ll vupp  ,

)()( )),((  of each player l , 1,0  rl  and the final sequence of states X  of 

the system L . We will show how this problem can be reduced to the unit transition costs 

case using extended network method and how to find the win probabilities of the players. 

 

2. TRANSITION COSTS DISCRETIZATION 

 

2.1 Reduction to the positive real transition costs case. First of all, our goal is to 

reduce the game network to the positive real transition costs case, for avoiding the 

problems that can be encountered when we deals with negative and zero numbers. 

Let us consider a new game 


, defined on stochastic system 
L  with the same final 

sequence of states 
XX  , finite set of states 

VV  , initial distribution of the states 

**


pp   and stationary strategy )()( ll pp 

  of each player l , 1,0  rl . The difference 

between the games 


 and   consists in the way how the transition costs are defined. 

Let ),(min
,

min vucc
Vvu




  be the minimal transition cost in the game  . We define the 

transition costs in the new game 


 in the following way: 

 


Vvucvucvuc ,,11),(),( min  . (1) 

Next, we consider a new game 1 , defined on stochastic system 1L  with the same final 

sequence of states XX 1 , finite set of states VV 1 , initial distribution of the states 

**

1 pp   and stationary strategy )()(

1

ll pp   of each player l , 1,0  rl . The transition 

costs in the new game 1  are all equal to 1. 

It is easy to observe that the following relation holds:  

,)1( 1

min CcCC   
 (2) 

where 1C  is the outcome of the game 1 , 
C  is the outcome of the game 


 and C  is the 

outcome of the game  . Indeed, we have 

 

   

.)1(1)1(),(

1),(1),(),(

1

min

),(

min

),(

),(

min

),(),(

min

),(

CcCcvuc

cvuccvucvucC

EvuEvu

EvuEvuEvuEvu











 









  

 

2.2 Reduction to the positive rational transition costs case. At this step, our goal is 

to reduce the game network to the case when the transition costs of related stochastic 

system are positive rational values.  
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Similar to the approach elaborated in [4], we will approximate the real cost of each 

transition with a rational number, such that the accuracy for the expectation of the game 

outcome to be less than a given value 0 . 

We consider the game 


, defined on stochastic system 
L  with the same final 

sequence of states   
XX , finite set of states   

VV , initial distribution of the states 

**
  

pp  and stationary strategy )()( ll pp   
 of each player l , 1,0  rl . We define the 

transition costs in the new game 


 in the following way: 

 


Vvuvuvucvuc ,),,(),(),(  , (3) 

choosing the nonnegative value ),( vu  such that  


),( vuc  for each 


Vvu,  and 

      
 CC , (4) 

where the accuracy 0  is given. 

Consider that 

1),(0 *   vu , 


Vvu, . (5) 

We obtain 

 

 

,),(1),(),(

),(),(),(),(),(

1

),(),(

),(),(),(),(

CvuCvuvuc

vuvucvuvucvucC

EvuEvu

EvuEvuEvuEvu









































  

that implies 

      )()(),()),(( 1

*

11 CCvuCvuCCCC 


   . (6) 

If we have  )( 1

* CE , then also the inequality       
 CC  holds. 

Consider an arbitrary value   )(,1min,0 1

* C  . If the natural number s  satisfies 

the condition s10* , then we can chose 

)}),(10{1(10),( vucvu ss
 


 , 


Vvu,  (7) 

and these values verify the relations (3), (4) and (5), where by }{a  is denoted the fractional 

part of the arbitrary real number a . From relations (3) and (7) we obtain 

  ,,),),(101(10),(   


Vvuvucvuc ss

 (8) 

where by  a  is denoted the integer part of the arbitrary real number a . So, in these 

conditions, we can consider     


CECE  with error of approximation  . 

2.3 Reduction to the positive integer transition costs case. At this step, our goal is 

to reduce the game network to the case when the transition costs of related system are 

positive integer values. We will do this transformation by changing the measurement unit, 

i.e. we will multiply each positive rational transition cost ),( vuc 
, 


Vvu, , by  , 

where   is the least common multiple of the denominators of these rational transition costs. 
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Let us consider a new game *
 , defined on stochastic system *

L  with the same final 

sequence of states 


XX * , finite set of states 


VV * , initial distribution of the states 

**
* 


pp  and stationary strategy )()(

*

ll pp 


 of each player l , 1,0  rl . We define the 

transition costs in the new game *
  in the following way: 

** ,),,(),(


Vvuvucvuc   . (9) 

In this way, we will have *),(* 


vuc , *,


Vvu  . We obtain 

  



  






CvucvucvucC
EvuEvuEvu


),(),(),(

),(),(),(
**

** , 
(10) 

that implies *

1


CC 


. 

2.4 Players’ states synchronization. Next step prepares the transition costs for 

extended network method application. It is necessary that, the application of extended 

network method do not change the player who acts in the state v  at each transition ),( vu . 

From this reason, we will ensure that, after this transformation, each positive integer 

transition cost is congruent to 1 modulo r , where r  is the number of the players. 

Let us consider a new game f , defined on stochastic system fL  with the same final 

sequence of states *
XX f  , finite set of states *

VV f  , initial distribution of the states 

**
*

pp f   and stationary strategy )()(
*

ll

f pp


  of each player l , 1,0  rl . We define the 

transition costs in the new game f  in the following way: 

ff Vvuvucrvuc  ,,1),(),( *
, (11) 

i.e. we apply the function **:  f , 1)(  rttf , to each positive integer transition cost.  

In this way, we will have *),( vuc f
 and )(mod1),( rvuc f  , fVvu  , . Also, 

  11

),(),(),(

*

*

** ),(1),(),( CCrCvucrvucrvucC
EvuEvuEvu

ff

ff

 






, 
(12) 

that implies  
1

1
* CC

r
C f 


. 

 

3. EXTENDED NETWORK METHOD 

 

3.1 Reduction to the unit transition costs case. At this step, our goal is to reduce the 

game network to the case when the transition costs of related stochastic system are equal 

to 1. Similar with approach presented in [5], we will do this transformation by applying 

extended network method, i.e. each edge ),( vu  with positive integer transition cost 

),( vuc f  will be replaced with ),( vuc f  edges with unit transition cost, fVvu  , . In this 

way, the total transition cost from arbitrary state fVu  to another state fVv  will not be 

changed, it is necessary only to ensure that also the transition probability from the state u  to 

the state v  will remain unchanged after extended network method application. 
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Let us consider a new game ext , defined on stochastic system extL  in the following way. 

For each state fVv  we choose the state fVu  such that ),(max),(
)(

vzcvuc f
vVz

f
f


 , where 









 





1

0

)( 0),()(
r

l

l

fff vzpVzvV . We split the transition ),( vu  in ),( vuc f  unit transitions 

using the new states vvuzvuzvuzvuzuvuz vucvuc ff
  ),();,(;);,();,(;),( ),(1),(210  . If 

1),( vuc f , then the stationary strategies )(l

fp , 1,0  rl , are updated in the following way: 

 

1. new rows and columns, filled with zeros, that correspond to intermediate states 

),( vuz j , 1),(,1  vucj f , are added; 

2. the element )),(),,(( 1

)( vuzvuzp jj

l

f 
 is set to 1, 1),(,1  vucj f ; 

3. the element )),(,( 1),(),(

)( vuzzp vzcvuc

l

f ff   is set to ),()( vzp l

f
 and, after that, the element 

),()( vzp l

f
 is set to 0, for each )(vVz f

  that satisfies the inequality 1),( vzc f . 

 

We consider 0)),((* vuzp jf
, 1),(,1  vucj f , because the game cannot be started from 

one intermediate state. The final sequence of states becomes 

 

.)),,(,),,(),,(

,

,),,(,),,(),,(

,),,(,),,(),,(,(

11),(1211

3321),(322321

2211),(2122111

1

32

21

mmmxxcmmmm

xxc

xxcext

xxxzxxzxxz

xxxzxxzxxz

xxxzxxzxxzxX

mmf

f

f



















 

 

So, if we put all these things together, we obtain that the new game ext  is defined on 

stochastic system extL , with a finite set of states extV , final sequence of states extX , an initial 

distribution of the states 
*

extp  and stationary strategy 
)(l

extp  of each player l , 1,0  rl , 

defined in the way described above. Also, each transition cost in this stochastic system is 

equal to 1. This implies that the outcome extC  of the game ext  is 

f

Evu

fext

EvuEvu

extext CvucEvucC
fextext

 
 ),(),(),(

),(1),( , 
(13) 

that implies extf CC  . 

3.2 Expectation of game outcome. Next, we will summarize the results obtained 

above. We have the following formula for calculating the outcome C  of the game  : 

 

.
1

1
1

)1()1(

)1(
1

)1()1(

1

min

1

min1
1

min1

1

min

1

min

1

min
*
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r

Cc
r
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Cc
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CcCCcCCcCC

ext
extf

















 









 

 

So, the expectation of the outcome C  of the game   is 
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)(
1

1)(
1

)( 1

min C
r

cC
r

C ext   










. (14) 

The values )( extC  and )( 1C  can be determined using the algorithm developed in [2], 

because the both games ext  and 1  are defined on stochastic systems with unit transition 

costs (which, in particular case, can be considered as unit transition time). 

3.3 Win probabilities of the players. From the definition of the win probabilities of 

the players, it is easy to observe that they depend only on the network structure and the 

transition probabilities of the stochastic system on which the game is defined. Indeed, if 

we consider that each transition time in the game   is equal with 1, and T  is the 

duration of the game  , then the win probability )(lw  of the player l , 1,0  rl , is 

given by the following relation: 







0

)( )())(mod(
k

l lkTPrlTPw  , 1,0  rl . (15) 

So, the win probabilities of the players do not depend on the transition costs. The win 

probabilities of the players in the game   are the same as the win probabilities of the 

players in the game 1 , that can be found using the algorithm from [2]. 

 

CONCLUSIONS 

 

The purpose of this paper was to generalize the problem of determining the 

expectation of the game outcome for the case when the transition costs are real. The 

elaborated approach is based on extended network method, that allows us to reduce the 

real transition costs case to unit transition time case. 

This reduced case was investigated in [2] and algorithms for determining the 

expectation of the game duration (outcome) and win probabilities of the players were 

developed. So, solving the problem for the unit transition time case and performing the 

transformations presented in this paper, we obtain the solution of the problem in the 

general case, when the transition costs are real. 
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Abstract: Centered upon statistical models relating to qualitative aspects, the following paper 

sets out to demonstrate that by means of the Akaike information criterion (AIC) a statistical 

selection of the MinParB distribution for different parameter values can be obtained based on the 

statistical simulation algorithm of the power series distribution, called the Min Pareto Binomial 
[4], and the EM algorithm for the statistical estimation of the parameters of the MinParB 

distribution. The determining of the MinParB distribution from a unitary perspective regarding 

the class of the power series distributions [2] has also been taken into consideration. 
 

Keywords: power series distributions, Pareto distribution, Binomial distribution, distribution 

of the minimum, EM algorithm, information criterion. 

 

1. INTRODUCTION 

 

According to the Pareto principle, also known as the "80/20 rule", in the case of 

events, about 80% of the effects is generated by 20% of the causes. Management 

consultant Joseph M. Juran was the first to suggest this principle, which he named after 

the Italian economist Vilfredo Pareto, who identified the well-known 80/20 ratio. 

Basically, Pareto demonstrated that about 80% of the land in Italy was owned by 20% of 

the population.  In business, the same basic rule applies (for example, 80% of sales come 

from 20% of clients) [1]. Similarly, for a given set of parameters, in the case of natural 

phenomena, the existence of an empirically obtained Pareto distribution has been 

observed [2]. 

The Pareto distribution is particularly used in situations in which there is a high 

probability of paying large sums in compensation, namely liability insurance. 

Let  
1i i

X


be a sequence of a number of independent and identically distributed random 

variables, ( , ),  , 0iX Par       with the cumulative distribution function 

( ) ( ) 1 ,  
iX ParF x F x x

x





 

    
 

 and the probability density function 

1
( ) ( ) ,  

iX Parf x f x x
x









   .  

Also, we denote by  1 2min , ,...,Par ZV X X X , where random variable 

 ( , ),  1,2,... ,  (0,1)Z Binom n p n p  , and  
1i i

X


 are independent and Pareto distributed 

random variables. The cumulative distribution function, the probability density function and 

some reliability characteristics of the random variable ParV  are given in the paper [4].  
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The random variable ParV  generates two events: 

 The event to minimize the amounts claimed  
1,i i Z

X


 regarding the civil liability 

insurance; 

 The number of the claimed amounts Z represents the number of successes out of  

the n independent events with the probability of success p. 

 Therefore, we discuss the distribution ( , , , )MinParB n p  , , 0   , (0,1)p , 

 1,2,...n . The numerical characteristics of this distribution are presented in the paper [4]. 

 

2. INFORMATION CRITERION 

 

The common approach to model selection involves choosing a model that minimizes 

one or several information criteria applied to a set of statistical models [1],[5]. 

The commonly used information criteria are: Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), Hannan-Quinn Information Criterion (HQIC) and 

consistent Akaike information criteria (CAIC).   

Each criterion is a sum of two terms: the first term characterizes the entropy rate or 

model prediction error, whereas the second one describes the number of the free 

parameters estimated based on the model [2]. 

2.1. Akaike Information Criterion.  The Akaike Information Criterion (AIC) is a 

criterion for selecting from nested (overlapping) economic models. Basically, AIC is a 

measure estimating the quality of each studied economic model, since they relate to one 

another for a given set of data. Therefore, AIC is an ideal method for selecting the model. 

Discovered and put forward by Professor Hirotugu Akaike in 1971, respectively in 

1974, the AIC was defined as a measure of matching the statistical model. 

AIC is an associated number for each separate model, as follows: 

ˆ2 ( , ) 2AIC L x q    , (1) 

where ˆ( , )L x   represents the maximum likelihood function,  ˆ ˆ ˆ, p  the parameter 

vector estimated by applying the EM algorithm [4], and q  represents the number of 

parameters of the statistical model. In our case, 2q  . 

Therefore, for the set of AIC values corresponding to each particular economic model, the 

preferred one in terms of relative quality is the model with the minimum value. ( minAIC ). 

The loss of information when the statistical model that has been studied and analysed in 

relation to the best estimated model is given by: 

mini iAIC AIC   , (2) 

where i  is the number of statistical models to which AIC has been applied, and  

minAIC stands for the minimal value AIC out of the values’ vector. 

2.2. Bayesian Information Criterion. Bayesian information criterion (BIC) is also a 

mathematical tool applied to statistical models from the economic field. It is a criterion 

similar to AIC. The BIC or the Schwartz criterion (1978) is a number characterized by the 

relation: 
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ˆ2 ( , ) ln( )BIC L x q m    , (3) 

where ˆ( , )L x   represents the maximum likelihood function,  ˆ ˆ ˆ, p  is the parameter 

vector estimated as a result of applying the EM algorithm [4], q  represents the number of 

parameters of the statistical model ( 2q  ), and m  characterizes the volume of the statistical 

data. 

2.3. Hannan-Quinn Information Criterion. The Hannan-Quinn Information 

Criterion (HQIC) is an information criterion that is used alternatively with AIC and BIC. 

The criterion is represented by the number: 

ˆ2 ( , ) 2 ln(ln( ))HQIC L x q m    , (4) 

where ˆ( , )L x  , q  and m  have the same interpretations as the AIC and BIC criteria. 

2.4. Consistent Akaike Information Criteria. Consistent Akaike Information 

Criteria (CAIC) is, essentially, a correction to the Akaike Information Criterion (AIC), 

this being characterized by the relation: 

2 ( 1)

1

q q
CAIC AIC

m q


 

 
 (5) 

or 

2ˆ2 ( , )
1

qm
CAIC L x

m q
   

 
, (6) 

where ˆ( , )L x  , q  and m  have the same interpretations as the AIC and BIC criteria. 

  

3. APPLICATIONS 

 

According to the studies in paper [4], the logarithm maximum likelihood function is 

defined as follows: 

 

 

ˆ

1

ˆ ˆ ˆˆ ˆln ( , ) ln ln ln ln ln 1 (1 )

ˆˆ ˆ                 + ( 1) ln 1 1 ln

n

m

j

j j

L x m n p m p

n p p x
x



  






         

                 


, (4) 

where  ˆ ˆ ˆ, p  the parameter vector estimated as a result of applying the EM algorithm.  

The step-by-step description of the algorithm is included in paper [4] and implemented in 

the GUI Octave 1.5.4 programming environment.  

The values of the estimated parameters, as well as the AIC values are shown in Tables 1 

and 2 for sample values 100m  , the parameters of the Pareto distribution 1   and 

 0,5;1;3;10 , and for Binomial distribution parameters  4;40n  and 

 0,2;0,5;0,9p .  

Also, in Tables 1 and 2 the values of the AIC, BIC, HQIC, CAIC are expressed. These  

values have been obtained by means of the EXCEL computing environment.   



Qualitative aspects of the min pareto binomial distribution 
 

66 

 Based on the numerical values in Tables 1 and 2, the following situations are 

represented: 

     The values of the information criteria (AIC, BIC, HQIC, CAIC) according to the 

estimated parameters  ˆ ˆ ˆ, p , (Fig. 1);  

 The comparative graphical analysis (based on the value categories of  ) of the 

information criteria values in relation to the values of the parameter p  (Fig. 2). 

 

Table1. Estimated parameter values and the AIC, BIC, HQIC, CAIC values for (1, ,4, )MinParB p  

( ; )p  ̂  p̂  ĥ  AIC  BIC  HQIC  CAIC  

(10;0,2) 10,633 0,025 1159 -261,302 -256,091 -259,193 -261,178 

(10;0,5) 10,625 0,446 712 -462,254 -457,044 -460,146 -462,131 

(10;0,9) 11,033 0,724 457 -586,408 -581,197 -584,299 -586,284 

(3;0,2) 3,188 0,025 855 22,376 27,586 24,485 22,500 

(3;0,5) 3,187 0,446 588 -193,921 -188,711 -191,813 -193,798 

(3;0,9) 3,310 0,724 392 -328,444 -323,233 -326,335 -328,320 

(1;0,2) 1,062 0,027 646 269,888 275,098 271,996 270,011 

(1;0,5) 1,062 0,446 474 65,457 70,668 67,566 65,581 

(1;0,9) 1,103 0,724 333 -420,047 -414,837 -417,938 -419,923 

(0,5;0,2) 0,531 0,027 646 392,080 397,290 394,189 392,204 

(0,5;0,5) 0,530 0,447 426 217,308 222,518 219,417 217,432 

(0,5;0,9) 0,551 0,724 302 102,860 108,070 104,968 102,983 

 
      Table 2. Estimated parameter values and AIC, BIC, HQIC, CAIC values for (1, ,40, )MinParB p  

( ; )p  ̂  p̂  ĥ  AIC  BIC  HQIC  CAIC  

(10;0,2) 14,575 0,142 1339 -1,078E+71 -1,078E+71 -1,078E+71 -1,078E+71 

(10;0,5) 8,831 0,585 5001 -7,134E+50 -7,134E+50 -7,134E+50 -7,134E+50 

(10;0,9) 10,116 0,832 5001 -2,937E+53 -2,937E+53 -2,937E+53 -2,937E+53 

(3;0,2) 4,371 0,142 1149 -584,960 -579,750 -582,852 -584,837 

(3;0,5) 2,649 0,585 5001 -809,318 -804,108 -807,210 -809,195 

(3;0,9) 3,035 0,832 5001 -910,978 -905,768 -908,869 -910,854 

(1;0,2) 1,456 0,142 975 -345,206 -339,996 -343,097 -345,082 

(1;0,5) 0,883 0,585 5001 -583,025 -577,815 -580,916 -582,901 

(1;0,9) 1,101 0,832 5001 -703,705 -698,494 -701,596 -703,581 

(0,5;0,2) 0,727 0,142 865 -184,485 -179,275 -182,376 -184,361 

(0,5;0,5) 0,442 0,585 5001 -434,522 -429,312 -432,413 -423,398 

(0,5;0,9) 0,506 0,832 5001 -576,236 -571,025 -574,127 -576,112 
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       (a)                                             (b)   

FIG.1. (a) AIC depending on the probability p and  0,5;1;3;10  established; (b) AIC depending on and 

 0,5;1;3;10p for the distribution (1, ,4, )MinParB p  
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                                                  (c)                                                                                                    (d) 

 

FIG.2. The values of the AIC, BIC, HQIC, CAIC  depending on the probability p and  0,5;1;3;10   

established in situations  (a), (b), (c), respectively (d)  for the distribution (1, ,4, )MinParB p . Comparative 

graphic analysis 
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CONCLUSIONS 

 

The main objective of this study is to perform a quantitative analysis of the statistical 

model as described in paper [4] in a unitary manner and from the perspective of the power 

series distribution class [3]. The values of the main information criteria (AIC, BIC HQIC, 

CAIC) as described in Section 2 have been determined. The values of the information 

criteria are closely related to the existence of the maximum likelihood function and the 

presence of the estimated parameters by means of the EM algorithm [4]. 

The findings of our analysis are, as follows: according to the representations in Fig. 

1(a) a decrease in the parameter   determines an increase in the values of the 

information criteria AIC, BIC, HQIC, CAIC; this dependence decreases when the values 

of p increase. Also, it has been noted that compared to the threshold value 0,5p   the 

values AIC, BIC HQIC, CAIC are equidistant, except when 1  . The following can be 

observed based on Fig. 1 (b):  the higher the probability p, the smaller the values of AIC, BIC, 

HQIC, CAIC. Compared to the threshold value of the parameter 3  , the values of the 

information criteria are equidistant.  

It can also be noted that the lowest values are characterized by the AIC information 

criterion in all the analyzed situations (Table 1, Table 2, Fig. 2).  For example, based on Fig. 

2(a), it can be concluded that the statistical model (1,10,4,0.9)MinParB  is selected as the 

best, providing us the best information, whereas Fig. 2(d) shows that the distribution 

(1,0.5,4,0.9)MinParB  is the model selected as being the best.  From Fig. 2, for high 

probabilities (for example 0,9p  ) we have low values for all the information criteria, and 

from Table 2, the values of the information criteria AIC, BIC HQIC, CAIC for the 

distribution (1,10,4, )MinParB p ,  0.2;0.5;0,9p  are very small, therefore a qualitative 

analysis of this distribution cannot be made in relation to the other distributions. 
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1. INTRODUCTION 

 

Banach's contraction principle (BCP) [1] is one of the initial and also fundamental results 

in theory of fixed point. In the literature, there are plenty of extensions of this result.  

Theorem 1.1.([1]). Let  be a complete metric space and let XXT :  a 

contraction (  Then T has a unique fixed 

point in X. 

Several authors have obtained many extensions and generalizations of the (BCP). So, in 

1962, Edelstein [2] proved the next version of contraction principle. 

Theorem 1.2.([2]). Let  be a compact metric space and let XXT : . Assume 

that  for all  with . Then T has a unique fixed point in X. 

In 2009, Suzuki [7] proved generalized versions of Edelstein’s result in compact metric 

space as follows. 

Theorem 1.3.([7]).Let  be a compact metric space and let XXT : . Assume 

that  

 for all  with . Then T has 

a unique fixed point in X. 

Later, in 2012,Wardowski [9] generalized the Banach contraction principle in a different 

manner, introducing a new type of contractions called F-contraction. 

Definition 1.4. ([9]). Let  dX ,  be a metric space. An operator XXT :  is said to be 

an F-contraction if there exists  such that  

 

       XyxyxdFTyTxdFTyTxd  ,)(,,),(0,     (1) 

where RF ),0(:  is a mapping satisfying the following conditions:  

(F1) F is strictly increasing, i.e. for all   ,0, , such that     FF  , ; 

(F2)For each sequence  
0nn  of positive numbers 0lim 


n

n
 if and only if 

  


n
n

F lim  

(F3) There exists  1,0k  such that   0lim
0







Fk
. 
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Theorem 1.5.([9]). Let  be a complete metric space and let  XXT :  be an F-

contraction. Then T has a unique fixed point Xx *  and for every Xx the sequence 

  n

nxT converges to *x . 

In 2014, Piri [5] proved the following result: 

Theorem 1.6. ([5]). Let  dX , be a complete metric space and XXT : be an F-

Suzuki contraction. Then T has a unique fixed point Xx *  and for every Xx the 

sequence   n

nxT converges to *x . 

Definition 1.7. ([5]). Let  dX , be a metric space. A mapping XXT : is said to be an 

F-Suzuki contraction if there exists 0  such that for all Xyx , with TyTx   

 

      ,,,(),(,
2

1
yxdFTyTxdFyxdTxxd    

(2) 

 

where RR: F  is a mapping satisfying the following conditions: 

(Fs1) F is strictly increasing, i.e. for all   ,0, , such that     FF  , ; 

(Fs2) Finf ; 

(Fs3) F is continuous on  ,0 . 

In this paper, using the idea from [4] we introduced a new type of  F-contraction, and will 

prove a fixed point theorem which generalizes some known results. 

 

2. MAIN RESULTS 

 

 First, let F denote the family of all functions RR: F  which satisfies the following 

conditions: 

 ( 1EF ) F is strictly increasing, that is, for all Ryx, , if yx  then )()( yFxF  ; 

 ( 2EF ) F is continuous on  ,0 . 

Definition 2.1. Let  dX , be a complete metric space. A map XXT :  is said to be a 

EF -Suzuki contraction on (X,d) if there exists F  F and τ>0 such that for all Xyx ,  

 

         yxEFTyTxdFyxdTxxd ,,,,
2

1
   

(3) 

 

where 

 

       TyydTxxdyxdyxE ,,,,   (4) 

 

Theorem 2.2. Let  dX , be a complete metric space and XXT : be an EF -Suzuki 

contraction. Then T has a unique fixed point Xx *  and for every Xx 0 the sequence 

 
n

nxT 0 converges to *x . 

Proof: Let Xx 0 be arbitrary and fixed. We define a sequence  
1nnx  by  

1,...,,, 0

1

10

2

1201  

 nxTTxxxTTxxTxx n

nn  (5) 

Suppose that 100  nn xx  for some N0 n  . Then 
00 nn xTx  . This proves that 

0nx  is a fixed 

point of T.  
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From now, we assume that 1 nn xx , n . Then    nnnn Txxdxxd ,,0 1    and 

        nxxdTxxdTxxd nnnnnn ,,,,
2

1
1 . It follows from (3), that there exist 0 so 

that 

 

           121

2 ,,,,   nnnnnnnn xxEFxxdFTxxEFxTTxdF 
 

(6) 

  

where 

  

       

     2111

1111

,,,

,,,,









nnnnnn

nnnnnnnn

xxdxxdxxd

TxxdTxxdxxdxxE

 

 

If we denote by  1,  nnn xxdd  we have   11,   nnnnn dddxxE  and (6) becomes  

 

   11   nnnn dddFdF    (7) 

 

If there exists n  such that nn dd 1 , then     .011    nn dFdF  

This is a contradiction. Then, for 1 nn dd , because 0 , we have  

 

         11111 222   nnnnnnnn ddFddFdFddFdF   (8) 

and using ( 1EF ), 11 2   nnn ddd , so, the sequence  nd  is strictly increasing and bounded. 

Now, let n
n

dd


 lim  and we suppose that 0d . Because   ddn   it result that 

  ddd nn  12 , and taking the limit as n  in (8), we get 

    .000   dFdF  

But, this is a contradiction. Therefore, 

 

  0,limlim 


nn
n

n
n

Txxdd . (9) 

 

In order to prove that  
0nnx  is a Cauchy sequence in metric space  dX , , we suppose 

contrary, that is, there exist 0  and the sequences    )(,)( kmkn  of positiv integers with 

kkmkn  )()(  such that   )()( , kmkn xxd  and    )(1)( , kmkn xxd ,   Nk . 

Then we have            )(1)()(1)(1)()()()( ,,,, knknkmknknknkmkn xxdxxdxxdxxd . 

Letting k  and using (9) it follows that  

 

  


)()( ,lim kmkn
k

xxd  (10) 

 

From (9) and (10) it result there exist a natural number N such that  

        .,,
2

)(,
2

1
,

2

1
)()()()(1)()( NkxxdxTxdxxd kmknknknknkn 


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So, because the assumption of the theorem, we get 

 

          NkxxEFTxTxdFxxdxTxd kmknkmknkmknknkn  ,,,),()(,
2

1
)()()()()()()()( 

 

         .,,,, 1)()(1)()()()(1)(1)(   kmkmknknkmknkmkn xxdxxdxxdFxxdF

 

 

 

 

Taking the limit as k  and using ( 2EF ) 

 

.0)()(   FF   

 

It is a contradiction. This shows that  nx  is a Cauchy sequences and by completeness of 

X there converges to some point Xx * . Therefore 

  .0,lim * 


xTxd n
n

 (11) 

 

Next, we show that *x  is a fixed point of T . For this, we claim that  

       *2* ,,
2

1
,,

2

1
xTxdxTTxdorxxdTxxd nnnnnn   

(12) 

 

Assume that there exists m such that  

       *2* ,,
2

1
,,

2

1
xTxdxTTxdandxxdTxxd mmmmmm   

(13) 

 

Then,  

        mmmmm TxxdxxdTxxdxxd ,,
2

1
,

2

1
, ***   

 

 

which implies that 

   mm Txxdxxd ,, **   (14) 

 

and from (13)  

     mmmm xTTxdTxxdxxd 2** ,
2

1
,,   

(15) 

 

Since      mmmmmm TxxdxxdTxxd ,,,
2

1
1   , by the assumption of theorem we get  

        mmmmmm TxxEFTxxEFxTTxdF ,,, 2     

because 0 . 

       

      So, from ( 1EF ) we get  

         mmmmmmmmmm xTTxdxxdTxxdTxxExTTxd 2

1

2 ,,,,,     

       mmmmmmmm TxxdxTTxdxTTxdTxxd ,,,,2 22   (16) 

and from (13), (15), (16) it follows that  
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         mmmmmmmm xTTxdTxxdxxdTxxdxTTxd 2**2 ,,,,,    

 

This is a contradiction. Hence relations (12) holds. 

We suppose now that ** xTx  .  

(1)  If    *,,
2

1
xxdTxxd nnn    from assumption of theorem,  

 

     
     ),(),(,,

,,

**

1

**

1

**

TxxdxxdxxdFTxxdF

xxEFTxTxdF

nnnn

nn








 

 

 

Taking the limit and using ( 2EF ) we have 

    0),(),( ****   TxxdFTxxdF  

 

 

This is a contradiction. 

(2)  If    *2 ,,
2

1
xTxdxTTxd nnn   then  

    
    **

21

*

1

*

2

**2

,),(),(,(

,),(

TxxdxxdxxdFTxxdF

xTxEFTxxTdF

nnnn

nn








 

 

 

 

 

So, taking the limit when:  

    0,, ****   TxxFTxxF  

 

 

 

Hence *x is a fixed point of T .  

Finally, we prove that the fixed point of T  is unique. For this, let **, yx  be two fixed 

points of T  and suppose that **** TyyxTx  , so 0),( ** yxd . 

Because     ),(,),(),(, ********** yxdTyydTxxdyxdyxE   it follows that  

 

       
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2

1
0
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********









yxEFyxdF

yxEFTyTxdFyxdTxxd
 

 

 

It is a contradiction. Then, 0),( ** yxd , that is 
** yx  . This proves that the fixed point 

of T  is unique.  
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1. INTRODUCTION 

 

In this paper, we deal with a generalization of Lindley distribution because it forms a 

flexible family of distributions with an important selection of shape and hazard functions. 

The Lindley distribution was firstly proposed by Lindley (1958) in the context of 

Bayesian statistics, based on Bayes theorem [1], [2] as a counterexample of fiducial 

statistics. Mixing various distributions lead to the expansion of known families of 

distributions. In literature, there were introduced and studied some mixed data modeling 

distributions of life as Weibull Poisson, Weibull geometric, Exponential geometric. 

Lindley distribution is a one-parameter distribution, given by its probability density 

function  

   
2

1
1

xf x x e 



 
               

 1
 

 

The cumulative distribution function corresponding to (1) is 

 

 

                                                 
 2

 
 

The properties of the Lindley distribution were studied by M.E. Ghitany, B. Atieh, S. 

Nadarajah [4, 5, 6]. They discussed its applications to survival data and, also, showed in a 

numerical example that the Lindley distribution gives better modeling for waiting times 

and survival time data than the exponential distribution. Different forms of generalized 

Lindley distributions were been widely applied for reliability modeling and life testing 

data [10, 11]. There is a great development of another various quantitative techniques for 

solving optimization problems for biological and economical domains [8, 9]. 

 

 
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1 , 0, 0.
1

xx
F x e x 


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Definition 1.1 Let X be a random variable and the parameters , 0   . We say that X 

has a quasi Lindley distribution  ,~ QLX  if it has the probability density function 

   
2

1

xf x e x




 
  

and the cumulative distribution function 

 
 

 

 

Because the Lindley distribution (having only one parameter) does not provide 

enough flexibility for analyzing different types of lifetime data, in statistic literature it 

were introduced some new compounding the Lindley distribution with Negative Binomial 

distribution [3], with Poisson distribution [4] or Exponential Poisson [7] offering some 

new distributions of lifetime case obtaining from Generalized Lindley distribution 

compounding with exponential and gamma distributions. The quasi Lindley distribution 

reduces of the one following known distribution: 

 

1. For 1  , it becomes  Lindley    

2.  For 0  , it becomes  2,Gamma   

3. For   , it becomes  Exp   

 

The quasi Lindley distribution maybe can write as a two-component mixture of 

 Exp   and  2,Gamma  : 

       1 21 , 0, , 0f x pf x p f x x        

where  1,
1

xp f x e 




 


 and   2

2

xf x xe  
.
 

Ghitany et al. proposed the power transformation,
1/ , 0Y X    , for Lindley 

distribution for generating a flexible family of probability distributions. The new 

parameter would offer more distributional flexibility with a form of the hazard rate what 

can be decreasing, unimodal and decreasing-increasing-decreasing for some particular 

cases of the parameters. 

 

Definition 1.2 Let X be a random variable and the parameters , , 0    . We say 

that X has a quasi-power Lindley distribution  bQPLX ,,,~   if it has the probability 

density function 
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and the cumulative distribution function 
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The quasi power Lindley distribution may be can write as a two-component mixture 

of  ,Weibull   and  2, ,Gamma   : 

       1 21 , 0, , , 0f y pf y p f y y       
 

where   1

1,
1

yp f y y e
 




  


 and   2 2 1

2

yf y y e
     . 

We introduce a new four parameter distribution, denoted  

  0,,,,,,,~ bbEQPLX   

referred to as the exponentiated quasi power Lindley. This new distribution reduces to the 

quasi Lindley distribution, the exponential distribution and gamma distribution. On terms 

of reliability, the various shapes of the EQPL distribution give it an advantage, being 

more suitable to model many real systems which generally exhibit bath-tub shaped failure 

rate. 

 

Definition 1.3 Let  bEQPLX ,,,~  . The cumulative function of the 

 , , , ,EQPL b    , , , 0b     is 
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                         3  

 

and the corresponding probability density is given by 

 
                                         

 4  

 

The EQPL distribution reduces of the one following known distribution: 

1. For b=1, it becomes  , ,QPL     
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2. For 1  , it becomes PowerLindley  , , b   

 
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3. For 1b   , it becomes  ,QL    

  2, ,
1

x x
f x e  
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4. For 1b     , it becomes  L   
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The cdf of X can also be represented in an extended form 

           , 2, ,
1

1
ib i b i i

W GGamma
i

b
F x p p F x F x

i
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
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 
  

Definition 1.4 The corresponding hazard rate function is 
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2. STOCHASTIC ORDER 

Let  11111 ,,,~ bEQPLX   and  22222 ,,,~ bEQPLX   be two exponentiated 

quasi power Lindley random variables with common shape  . Let F1 denote the 

cumulative distribution function of 1X  and 2F  the cumulative distribution function for 2X . 

 

Defnition 2.1 We say that 1X
 
is stochastically greater or equal than  2 1 2stX X X  

if    
1 2X XF x F x , for all x where  

1XF x  and  
2XF x are the cdfs of 1X  and 2X , 

respectively. 

 

Definition 2.2 We say that 1X is stochastically greater than 2X with respect to 

likelihood ratio  1 2lrX X  if 
 

 
2

1

X

X

f x

f x
 is an increasing function of x, where  

1XF x  and 

 
2XF x  are the cdfs of 1X  and 2X , respectively. 

 

Definition 2.3 We say 1X  is stochastically greater than 2X  with respect to reverse 

hazard rate  1 2hrX X if    
1 2X Xh x h x  and for all x. 

For establishing stochastic order we have the following important results due to 

Shaked and Shantikumar 

     1 2 1 2 1 2lr hr stX X X X X X      

The EQPL distribution is ordered with respect to the strongest one as shown in the 

following theorem. 
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Also, we have 
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        (5) 

Theorem 2.4 If we have 1 2 1 2,      and 1 2  then 2X  is stochastically greater 

with respect to likelihood ratio than 1X  if and only if 1 2b b . 

Theorem 2.5 If we have 1 2 1 2, 1b b b      and 1 2  then 2X  is stochastically 

greater with respect to likelihood ratio than 1X  if and only if 2 1  . 

Theorem 2.6 If we have 1 2 1 2, 1b b b      and 1 2 
 
then 2X  is stochastically 

greater with respect to likelihood ratio than 1X  if and only if 2 1  . 

 

3. MOMENTS 

We will obtain the moments of the EQPL distribution using the binomial series 

expansion. 

Theorem 3.1 The rth moment of the exponentiated quasi power Lindley  rE X  is 

given by 
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Using the binomial series expansion of 
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We obtain the rth moment of X and we find 
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So, the rth moment can be rewritten 
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Theorem 3.2 The moment generating function of the exponentiated quasi power 

Lindley  XM t  is given by 
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Proof.    
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Using the binomial series expansion like in the last theorem, we introduce the last two 

expansions in the moment generating function of X and we find 
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So, the moment generating function can be rewritten 
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The moment generating function has the last form 
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4. GENERATION ALGORITHMS 

We consider simulating values of a random variable  bEQPLX ,,,~   

Algorithm 1 

1. Generate   niUUi ,1,1,0~   

2. Set     
1/

1/1 1
1 1 exp 1 ,  1, .b

i iX W U i n 
 



              
 

 

Algorithm 2 
 

1. Generate   niUUi ,1,1,0~   

2. Generate   nilExponentiaVi ,1,0~   

3. Generate    niGi ,1,0,2~   

4. If 
1/ 1/ 1/, ,  then set  otherwise , 1,  .

1
i i i i iU p p X V X G i n





      
  

 

 

Simulation study 

n=10 

theta=seq(0,4,length=10) 

beta=seq(0,4,length=10) 

alpha=seq(0,4,length=10) 

u=runif(n) 

v=rexp(theta) 

g=rgamma(2*beta,theta) 

p=(alpha*theta)/(alpha*theta+1) 

if (u^(1/b)<p) 

{x=v^(1/b)} 

else {x=g^(1/b) 

x 

[1] 0.86096886 0.02832007 0.89052860 0.16637737 0.27854706 0.78316390 

[7] 0.30347644 0.42973307 0.21931648 0.76245404  
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1. INTRODUCTION 

 

Document classification is a very actual issue and is a continuous challenge; it is 

based on different techniques of machine learning including Bayesian classification [6], 

SVM classifiers (Support Vector Machine) [9],[11] k-NN (k-Nearest-Neighbor) classifier 

[10], classification based on association rules [20], decision tree [16] etc.  

Such machine learning techniques can be applied on complex information systems 

like in [1],[2],[3],[5], and for mathematical models like [6],[7],[8]. In the economic field, 

quantitative analysis of risk represents one of the phases that have to be followed in order 

to evaluate risks that an organization may face while developing its business [4], 

[12],[13]. This kind of analysis aims to numerical assessment of the probability and 

impact of each risk upon the organization's objectives.  For this purpose there are used 

quantitative techniques such as the decision tree method [14],[15]. 

 In literature there exist also statistical machine learning methods that can be applied 

to document clustering, document classification and predictive modeling. For testing the 

model inference, one can use the Monte Carlo method [18]. 

Our application for text classification takes into account the training set with 

synonyms and without synonyms. Synonyms are words having similar meaning. In our 

study we use the Naïve Bayes Multinomial classifier and we study the conditions that 

allow the classifier to obtain the highest prediction. 

There are many studies on extracting synonyms automatically including the use of 

machine learning. Some studies analyze synonyms using similarity without machine 

learning. In [21] the authors present an automatic selection of synonyms using machine 

learning.  

In our paper we are looking after synonyms for the four training sets for different 

categories (spam, sport, social-media, and travel). It is important to obtain high 

performance for automatic selection of synonyms using machine learning for the 

language of interest.  
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2. NAÏVE BAYES CLASSIFIER 

 

2.1 Bayes’ theorem 

Let us consider an experiment denoted by E. We denote by S the sample space as the 

set of all possible outcomes of E. [17] 

Definition 1 

Let be A and B two events associated with an experiment E.  

We denote by )|( ABP  the conditional probability of the event B, given that A has 

occurred.  

)|( ABP ,
)(

)(

AP

BAP 
 provided that 0)( AP   

 

Definition 2 

Events kBBB ,...,, 21  represent a partition of the sample space S if 

(a)  ji BB  for all ji   

(b) 
k

i

i SB
1

  

( c ) 0)( iBP  for all ki ,1 . 

 

Definition 2 means that when the experiment E is performed one and only one of the 

events iB occurs. 

Let A be an arbitar event generated from S and let kBBB ,...,, 21  the partition of S. 

Let SBBB k  ...21 , where kBBB ,...,, 21 are mutually exclusive and exhaustive 

events. Each term )( jBAP   may be expressed as )()|( jj BPBAP  and hence we obtain 

what is called the theorem on total probability: 

 

)()|(...)()|()()|()( 2211 kk BPBAPBPBAPBPBAPAP                                        (1) 

 

Bayes’ theorem 

Let  kBBB ,...,, 21  be a partition of the sample space S and let A be an event associated 

with S. From the definition of conditional probability we obtain 

 


k

j jj

ii

BPBAP

BPBAP
ABP

1
)()|(

)()|(
)|(                                                                                        (2) 

 

The previous formula is called the formula for the probability of “causes”. Bayes’s 

theorem is the basis of statistical decision theory in some situations. [19] 

Let us consider the event kiBi ,1,  . The probability )( iBP is called prior probability, 

)|( ABP i  is called posteriori probability and )|( iBAP  is called the likelihood. 

The Bayes’ theorem provides a way of calculating the posterior probability, )|( ABP i  

if )( iBP , )(AP  and )|( iBAP  are known. 
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2.2 The classification problem  

We consider a set of n classes nccc ,...,, 21 . The problem is to determine which class(es) 

a given object belongs to. If this collection will increase, we must repeat the task but we 

want that repetitive task be automated. This process is called standing query, it is like any 

other query except that it is periodically executed on a collection to which new documents 

are incrementally added over time. [5] 

If  the standing query serves to divide the collection into the two classes, we refer to 

this as two-class classification. 

Many systems support standing queries. When we use a classification with standing 

queries it is called routing or filtering. 

 

2.3 Bayes classifiers 

The Bayes classifiers are also called: Idiot Bayes, Naïve Bayes, Simple Bayes. The 

Bayes classifiers use Bayes’ theorem. 

The Naive Bayes classifier is a simple probabilistic classifier which is based on Bayes 

theorem with strong and naïve independence assumptions. It is one of the most basic text 

classification techniques with various applications. 

Naive Bayes performs well in many complex real-world problems, even if it has a  

naïve design and oversimplified assumptions. This classifier is superior in terms of 

memory consumption and in several cases its performance is very close to more 

complicated and slower classification techniques. Overall, the Naive Bayes classifier is 

used as a baseline in many researches. 

There are several types of Naïve Bayes classifiers: Multinomial Naive Bayes, 

Binarized Multinomial Naive Bayes and the Bernoulli Naive Bayes. Naïve Bayes and 

multinomial Naïve Bayes model are both supervised learning methods. They are also 

probabilistic learning methods. 

Each type of Naïve Bayes classifiers can have as output different results since they 

use completely different models. 

Multinomial Naive Bayes is used when the multiple occurrences of the words is very 

important in the classification problem. The Binarized Multinomial Naive Bayes is used 

when the frequencies of the words don’t have a very important role in the classification. 

Bernoulli Naive Bayes can be used when is important the absence of a particular word 

matters. Bernoulli is usually used in spam detection and good results are obtained. 

 

2.4 Text classification problem  

Text classification is intended to assigning subjects to categories and can be used for 

spam detection, age or gender identification, language identification, etc.  

In practice, it is possible to have more than two classes and the naïve Bayesian 

classifiers estimate the probability of class jc  generating instance d. Generally, the Naïve 

Bayes attributes have independent distributions. The assumption to have all attributes 

independent because of the meaning of the word naïve does not fit in real world 

situations. Though, the classifier works well in many practical situations. 

A text classification definition can be: we have as input a document d, a fixed set of 

classes  ncccC ,...,, 21  and as output a predicted class Cc  [16]. 

A method that we can use to predict the class c is using a Supervised Machine 

Learning Method. This means we have as input a document d, a fixed set of classes 

 ncccC ,...,, 21 , a training set of m hand-labeled documents      mm cdcdcd ,,...,,,, 2211 . 

The output will be a learned classifier cdg : . 
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We denote by X the document space. In text classification, we are given a description 

Xd  of a document and a fixed set of classes  ncccC ,...,, 21 . Classes are called 

categories or labels.  

 

The Naive Bayes classifiers can be represented as this type of graph: 

 
FIG. 1. Naïve Bayes classifier 

 

The directions of the arrows indicate which state that each class causes certain 

features, with a certain probability.  

In text classification, the goal is to find the best class for the document. The best class 

in Naïve Bayes classification is the most likely or MAximum a Posteriori (MAP) class 

noted with MAPc . We refer at MAPc  as “MAximum a Posteriori”; the most likely class 

Cc . 

P(d)

c))|P(t … c)|P(t c)|P(t (P(c)max  arg

)(

c)P(c))| t,…,t,(P(t maxarg

)(

))()|(max(arg
)|(maxarg

n21

n21




dPdP

cPcdP
dcPcMAP

(3) 

 

There will be used only argmax(P(d|c)P(c) because it analyzes the same document d, 

which is test set. The document d is consisting of up of 
dk nkt ,1,   terms, where dn  is 

the number of  terms in document d. These kt  terms are tokens in document d [5].  

The notation )|( ctP n  represents the relative frequency of term nt  in document d 

belonging to class c. The situation when there is a term with zero frequencies is not 

possible and one use Laplace smoothing (add-1) for Naïve Bayes which adds one. This 

way one eliminates zeros. 

We compare the calculated probabilities that the document belongs to a certain class 

and we choose the class with the higher probability.  
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3. APPLICATION - DOCUMENTS CLASSIFICATION WITH  

NAÏVE BAYES CLASSIFIER 
 

In our application we use WEKA (Waikato Environment for Knowledge Analysis) 

that is a collection of machine learning algorithms for solving real-world data mining 

problems. Features of Weka are: machine learning, data mining, preprocessing, 

classification, regression, clustering, association rules, attribute selection, visualization 

[22]. 

WEKA software allows us to calculate the probability that a document belongs to a 

particular class, in which case we have the four categories of spam, sport, social media 

and travel but can not analyze the synonyms in a test set or training set for a foreign 

language.  

The paper proposes to study the belonging of a document to a so-called class from two 

points of view, namely: 

 

1. Pairs of words that are synonymous; 

2. Words totally, without taking into account pairs of synonyms. 

  

The scheme below suggests the proposed layout. 
 

 
FIG. 2. Creating and testing the model 

 

 

In our study we use the Naïve Bayes classifier from WEKA that has as output 

different files with results.  

Our training dataset consists of 40 documents having 2131 words, respectively 10 

documents for each category: sport, social media, spam and travel. We want to study 

which class the following document that includes synonyms (holiday and vacation 

belongs to: 'I want  a great holiday and vacation'. 
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In WEKA we made the following settings: we have chosen Meta - Filtered Classifier 

and classifier: Naïve Bayes Multinomial, filter: StringToWordVector. 

In testHV dataset holiday and vacation were considered distinct tokens and in testH 

and testV datasets they were considered as synonyms. The training set contains both 

tokens several times. We have obtained the results from the Table 1. 

 
      Table 1. Output for three datasets-Naïve Bayes 

Test set Document content Category Prediction Time (sec) 

testHV I want a great holiday and vacation Travel 0.429 0.02 

testH I want a great holiday Travel 0.352 0.02 

testV I want a great vacation Sport 0.515 0.01 

 

In Table 2 we highlight the number of appearance of tokens holiday and vacation in 

training dataset. 

       
Table 2. Number of appearance of words holiday and vacation in training dataset 

Category Number of appearance in training dataset 

holiday vacation 

Sport 0 1 

Social media 2 0 

Spam 0 0 

Travel 8 3 

 

Weka output of probability of word given the class from the training dataset given by 

class is highlighted in Table 3. Table 3 contains only the number of occurrence of words 

in training set from the test datasets. 
 

Table 3. Weka output: probability of word given by class 
Word Sport  Social media Spam Travel 

I 0.00205 0.00071 0.00069 0.00067 

want 0.00068 0.00213 0.00069 0.00135 

a 0.00410 0.00498 0.00484 0.00610 

great 0.00136 0.00071 0.00069 0.00067 

holiday 0.0068 0.00142 0.00069 0.00203 

and 0.00546 0.00570 0.00553 0.00542 

vacation 0.00136 0.00071 0.00069 0.00013 

 

In the testH document we have two synonyms holiday and vacation, and we have 

replaced all the occurrences of vacation with holiday. Applying the Naïve Bayes 

Multinomial classifier we have obtained that this document belongs to Travel category 

with prediction 0.352. This prediction is for Travel because the word holiday has the 

highest probability of word given the class in Travel (0.00203). 

In the testV document we have have two synonyms holiday and vacation, and we have 

replaced all the occurrences of holiday with vacation. Following the application of Naïve 

Bayes Multinomial classifier we have obtained that this document belongs to the Sport 

category with prediction 0.515. This prediction is for Sport because the word vacation has 

the best probability of word given the class in Sport (0.00136). 

The synonym selection in the dataset test is very important and should be made 

according to the significance of the information in the document, because in our training 

dataset we have both the words holiday and vacation. If we have replaced vacation with 

holiday, the Travel category has the highest probability of word given by the class, which 

has classified this document in Travel. Instead, when we replaced holiday with vacation, 

the probability of word given by class was for the Sport category. 
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Our proposal to do these two types of analysis is important if it is desired to classify 

documents in Travel or Sport, to take into account the meaning of synonyms for that 

language. 

We want to emphasize that holiday and vacation in English language are synonymous, 

but have different meanings depending on the context: vacation means "planned time 

spent not working"; holiday means "celebration day or time off". In this analysis of the 

ambiguous intent document, the human factor must work to specify which synonyms will 

be used. Such an analysis is useful for books translations, newspaper articles and another 

related domains. 

 

CONCLUSIONS 

 
In this paper we highlighted some theoretical aspects regarding the text classification problem 

using the Naïve Bayes Multinomial classifier. In our application we uses WEKA software for 

modeling this problem.  

We applied the Naïve Bayes Multinomial classifier on a training dataset containing a 

pair of words that are synonymous. We have studied the conditions for obtaining the 

highest prediction, taking into account the meaning of synonyms. From this point of view, 

our conclusion is that the human factor is decisive in choosing the proper synonyms.  
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1. INTRODUCTION 

 

1.1 The hypergeometric scheme (of the urn with the unreturned ball): 

In a urn there are A white balls and B black balls, from which n balls are extracted, 

BANn  : , one by one, without returning the drawn ball into the urn (or 

equivalently, all the n balls are removed simultaneously). The probability that among the 

n balls we have a white balls and ban  : balls is [1]: 

 

 
ba
BA

b
B

a
A

C

CC
b,aP




 , where    n,AminaNnA,0max                                              (1) 

 

1.2 Generalization: 

If there are balls colored in m colors in the urn: A1 balls of c1 color, A2 balls of c2 color, 

..., Am balls of cm color and n balls are extracted one by one without returning the ball 

drawn into the urn (or, equivalently, all the n balls are removed simultaneously), then the 

probability that form the n balls we have a1 balls of c1 color, a2 balls of c2 color,... am balls 

of cm color,...where na...aa m  21  is: 

 

 
m21

m21

m

m

2

2

1

1

a...aa

A...AA

a

A

a

A

a

A

m21
C

C...CC
a,...,a,aP





                                                                                      (2) 

 

2. THE WRONG SOLUTION 

 

The problem in discussion is formulated as follows: A urn contains 36 white balls and 

12 black balls. One person pulls the balls one by one until 10 white balls are obtained. 

Calculate the mean value of the number of extracted black balls [2].  

The solution proposed by the author is detailed below.  
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We are in the case of the unbalanced ball. The probability of removing 10 white balls 

and k black balls is: 

 

k10
48

k
12

10
36

C

CC
P




                                                                                                                      (3) 

 

The mean value of the number of extracted black balls is: 

 







12

0k
k10

48

k
1210

36
C

C
kCM                                                                                                          (4) 

 

It is true that we are in the case of the unreturned ball, but the probability computed 

above is wrong. It respects the condition of having 10 white balls, but does not respect 

what is meant by the context: the last ball drawn out is white. Probability P also includes 

the solution that the last ball is black, or when the 10th white ball is extracted, the 

experience ends. For example, we calculated the sum of the probabilities associated with 

the random variable   that counts the black balls drawn from the urn, according to the 

hypothesis of the problem: 

 

















 1210

48

12
12

10
36

310
48

3
12

10
36

210
48

2
12

10
36

110
48

1
12

10
36

010
48

0
12

10
36

C

CC
...

C

CC

C

CC

C

CC

C

CC
12...3210

:                                   (5) 

 








12

0k
k10

48

k
1210

36

12

0k

k
C

C
Cp = =.!36

.!10 !26
= 0

12

k

!12

.!k !( )12 k

!48

.!( )10 k !( )38 k

1.324

                                       (6)

 

 
 

3. THE CORRECT SOLUTION 

 

Below the correct solution is presented. It can be observed that we have modified the 

data of the problem, which obviously does not influence the correctness of the solution: 

In a urn we have 20 white balls and 80 black balls. Balls are extracted from the urn 

(without turning back the extracted ball) until 10 white balls are obtained. Calculate the 

mean and variance of the number of extracted black balls. 

The correct solution is detailed below.  

It is considered a urn that contains NA white balls and NB black balls, from which we 

extract the balls until nA white balls are obtained, where AA Nn0   

Let   be the variable describing the number of extracted black balls. It can be seen 

that the last ball drawn in the experience can only be white. It follows that event A: 

k  (we extracted k black balls to get the nA white balls, so a total amount of  Ank   

balls were extracted from the urn) is written as the intersection of the following two 

events, obviously independent ones: 

A1: in the first 1nk A   extractions 1nA   white balls and k black balls were 

obtained (regardless of their order); 

A2 : in the last extraction a white ball was obtained. 
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          kPAPAPAAPAP
teindependenA,A

AAA
2121

21

21









         (7) 

 

Event A1 is described by the hypergeometric scheme associated with the urn 

containing NA white balls and NB black balls, from which we extract 1nk A   balls, 

such that 1nA   balls are white and k balls are black. 

If BA NNN  , it results:  

 

 
1kn

N

k
N

1n

N

1
A

B

A

A

C

CC
AP






                 (8) 

 

Event A2 is described by the hypergeometric scheme associated with the urn with 

1nN AA   white ball and kN B   black balls, from which we draw a ball and it must be 

white. 

 

 
1nkN

1nN

C

CC
AP

AA

AA

1
1nkN

0
kN

1
1nN

2

AA

BAA













                                                                             (9)

 

 

  B

A

AA

1kn
N

k
N

1n

N
N,0k;

1nkN

1nN

C

CC
kP

A

B

A

A 









           

(10) 

 

In the proposed problem we have the particular case: 20N A  ; 80NB  ; 10nA  . 

The following random variable   distribution array results: 

 




























 11

11

C

CC
...

k91

11

C

CC
...

89

11

C

CC

90

11

C

CC

91

11

C

CC

80...k...210

:

89
100

80
80

9
20

1kn
100

k
80

9
20

11
100

2
80

9
20

10
100

1
80

9
20

9
100

0
80

9
20

A

(11) 

 

It may be observed that in this case the sum of probabilities is equal to 1: 

 
Na 80  Nb 20  na 10 

 kp =

= 0

Nb

k

.

.!Na

.!( )na 1 !( )Na na 1

!Nb

.!k !( )Nb k

!( )Na Nb

.!( )na k 1 !( )Na Nb na k 1

Na na 1

Na Nb k na 1
1

                         (12)

 

 

 
 




 


80

0k
k9

100

k
809

20
k91C

C
kC11M:m                                                                          (13) 
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m =..11
!20

.!9 !11
= 0

80

k

.k
!80

.!k !( )80 k

.( )91 k
!100

.!( )9 k !( )91 k

38.095

                                                                  (14)

 

 

 
 




 


80

0k
k9

100

k
8029
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2

k91C

C
kC11M                                                                              (15) 

 2M =..11
!20

.!9 !11
= 0
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k

.k
2 !80

.!k !( )80 k

.( )91 k
!100

.!( )9 k !( )91 k

1.54310
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                                                  (16)

 

 

    2222 mMD: 
                                                                                                               (17)      

 

2

=..11
!20

.!9 !11
= 0

80

k

.k
2 !80

.!k !( )80 k

.( )91 k
!100

.!( )9 k !( )91 k

..11
!20

.!9 !11
= 0

80

k

.k
!80

.!k !( )80 k

.( )91 k
!100

.!( )9 k !( )91 k

2

91.61  

                                                                                                                                    (18) 

 

In formulas 12-18 the calculations were performed by using the Mathcad program. 

 

CONCLUSIONS 

 

 Different extensions of this problem can be formulated and some of them can be 

reducible to the case of the two-color urn. One of them might be the following: In a urn 

we have N1 balls of c1 color, N2 balls of c2 color, ... and Nm balls of cm color. Balls from 

the urn (without returning the extracted ball) are extracted until np balls of cp color are 

obtained. Calculate the average and dispersion of the number of other color balls 

extracted. The problem is reduced to that presented at point 3, considering the urn with Np 

balls of cp color and 
pNN  balls of another color. 

Another observation that can be made: the probabilistic approach is a method of 

calculating sums with combinations. For example, this problem has shown that: 
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1. INTRODUCTION 

 

For some time, the stochastic approximation has become a subject of interest for many 

researchers in different fundamental and applied fields. There are two famous algorithms 

wich are very often utilized in the research of stochastic approximations (among other  

algorithms): the Robbins-Monro algorithm ([5], [6]) and the Kiefer-Wolfowitz algorithm 

([4]). A short time after these stochastic approximation algorithms appeared, A. 

Dvoretzky ([3]) discovered an approximation algorithm wich generalizesthe two 

previously mentioned algorithms. As a result of the particular interest generated by this 

new algorithm, many researchers have started studying it.       Two of these researchers 

are worth mentioning: Derman and Sacks ([2]), who found a demonstration (based on a 

technical lemma) wich is shorter and easier than that Dvoretzky’s initial theorem, wich 

has a rather lengthy and more difficult to apprehend demonstration.  This presentation 

contains a generalization of Dvoretzky’s initial theorem  realized by means of a 

generalization (among many others) of Derman and Sacks’s lemma. Firstly, we will 

provide Dvoretzky’s initial theorem without its demonstration and Derman and Sacks’s 

lemma for a better understanding of the starting point of this research.   

Dvoretzky’s Theorem ([3], pp. 39-55)  

Consider a probability space  ( , K ,P). 

Let be ( n ) *Nn
,( n ) *Nn

,( n ) *Nn
such that  n >0,  n  0,  n  0,  

 nN*,  n  
n

0, 


1n

 n <+  ,


1n

 n =+  . Let be   a real number and   

(T n ) *Nn
 a sequence of real and measurable functions wich satisfies: 

|T n ( r 1 ,r 2 ,…, r n )- |max{ n ; (1+  n )|r n  -  |- n },  n(N*-{1}) for every 

real numbers r 1 ,r 2 ,…, r n .  

Let be the sequences of random variables:  (X n ) *Nn
, (Y n ) *Nn

,such that 

X 1n ( ) =T n ( X1 ( ),X 2 ( )…, X n ( ))+Y n ( )  (a.s.),    ,  

 n(N*-{1}). 
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Suppose that the following conditions hold: 

E[Y1
2 ]<+  , 



1n

E[Y n

2 ]<+  , and E[Y n | X 1 ,X 2 ,…, X n ]=0 (a.s.),  nN*. In 

the conditons above there exist: 

E[(X n -  )
2
 ]  

n
0  with the probability one, and    

X n  
n

  with the probabilty one.  

 

Lema (Derman şi Sacks)([2]) 

Let be ( na ) *Nn
, ( nb ) *Nn

, ( nc ) *Nn
, ( n ) *Nn

, ( nx ) *Nn
,sequences of real numbers    

wich satisfy the following conditions: 

( na ) *Nn
,( nb ) *Nn

, ( nc ) *Nn
,( nx ) *Nn

 [0,+ ), 
n

lim ( na )=0;


1n

nb <+ ; 




1n

nc =+ ;


1n

n <+  şi  0N N*, such that for every n> 0N  we have:  

1nx max{ na ;(1+ nb ) nx + n - nc }. Hence  
n

lim ( nx )=0. 

 

2. THE MAIN RESULT 

 

Before we provide the generalization of Dvoretzky’s theorem, we wil offer a series of 

helping lemmas, some of wich are generalization of Derman and Sack’s lemma.  

 

Lemma 1. 

Let be the sequences of real number: (a n ) *Nn
, (b n ) *Nn

, (c n ) *Nn
,(d n ) *Nn

,  

(e n ) *Nn  
( n ) *Nn

,(x n ) *Nn
, such that we have:  

0 x 2n max{a 1n ; (1+b 1n )x 1n +e n x n +d n }, nN*,         (1) 

a n , b n , c n , e n  ,x n  0, n , a n  1,  nN*,         (2) 

a n 0, 


1n

b n <+  ,


1n

e n <+  , 


1n

c n =+  , 


1n

 n <+  , and  

d n = n - c n ,  nN*, d n R,  (3)           

| n |  c n ,  nN*, x1 ,x 2 R, such that (x 2  1 or x1  1),  (4)         

note that: K=max{ x 1 ,x 2  },  (5) 

suppose that the following conditions holds: b n +e 1n 
K

dn 1
,  

 n(N*-{1}). 

 (6) 

Hence  (x n ) *Nn
 isbounded  and  0 x n K. 

PROOF: From (3) and (4) it result that  d n = n - c n  | n |- c n  0, so we have: 

d n  0,  nN* (7) 

From (5) it result  K 1 (8) 

For  n=1 from (1) we obtain: 

0 x 3 max{a 2 ;(1+b 2 )x 2 +e 1 x 1 +d 1 }, (9) 

We have the inequality : 

(1+b 2 )x 2 +e 1 x 1 +d 1  (1+b 2 )K+e 1 K+d 1 K(1+b 2 +e 1 +
K

d1 )                                   
(10) 
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For  n=2 from (6) we obtain: b 2 +e 1 +
K

d1  0 and from (10) we have:   

(1+b 2 )x 2 +e 1 x 1 +d 1 K.  (11) 

From  (2), (8), (9) and (11) it result: 0 x 3 max{a 2 ; K}=K, so we have: 

0 x 3 K  (12) 

By induction we have: 

(1+b 1n )x 1n +e n x n +d n K(1+b 1n +e n +
K

d n ), nN*, 
 (13) 

in (6) we replace  n with (n+1) and we obtain: 

b 1n +e n +
K

d n  0 and from (13) it result:  (1+b 1n )x 1n +e n x n +d n   K, and from    

(1) and (2) we obtain: 

0 x 2n max{a 1n ; K}=K, so  0 x n K,  nN*, so 

(x n ) *Nn
is bounded  and  0 x n K (q.e.d.). 

 

Lemma 2. 

Let be the sequences (a n ) *Nn
, (b n ) *Nn

, (c n ) *Nn
,(d n ) *Nn

, (e n ) *Nn
,( n ) *Nn

  

and  (x n ) *Nn
, such that we have: 

0 x 2n max{a 1n ;(1+b 1n )x 1n +e n x n +d n }, nN*,    (1) 

a n , b n , c n , e n  ,x n  0,  n , a n  1,  nN*,    (2) 

a n 0,


1n

b n <+  ,


1n

e n <+  ,


1n

c n =+ ,


1n

 n <+  ,                       
   (3) 

d n = n -c n , nN*, d n R,                                                                                                (4) 

| n | c n , nN*,    (5) 

x 1 ,x 2 R, such that (x 2  1 or x1  1), and we note that: 

K=max{x 1 ,x 2 },                                                                                                         (6) 

Suppose that the following holds: b n +e 1n 
K

dn 1
, n(N*-{1}). 

   (7) 

Hence  x n  
n

0.       

PROOF: From the previous lemma, (lemma 1.) we have that the sequence 

(x n ) *Nn
 is bounded and 

0 x n K and from (1) we have:  

0 x 2n max{a 1n ; (1+b 1n )x 1n +e n K+d n }, nN*,    (8) 

Note that:   

e n K+d n = d
~

n     (9) 

so we have   0 x 2n max{a 1n ; (1+b 1n )x 1n + d
~

n }, nN*, and from (4) we  

have: 

with  d
~

n = e n K+ n - c n ,  nN*,  (10) 

Facem acum altă notaţie:     

e n K+ n = 
~

n   (11) 
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Using these notes  (10) becomes: 

0 x 2n max{a 1n ;(1+b 1n )x 1n +
~

n - c n }, nN*, with d
~

n =
~

n - c n ,  

 nN* 

(12) 

and from (3) it result:    




1n


~

n =


1n

 (e n K+ n )=K


1n

 e n -


1n

 n <+  , 
   (13) 

 

At this stage all the hypotheses of Derman and Sacks’s lemma ([2], pp. 602) or of 

lemma 1. in this paper, so  x n 0 (q.e.d.). 

 

Lemma 3. 

Let be the real sequences (a n ) *Nn
, (b n ) *Nn

, (c n ) *Nn
, (d n ) *Nn

,(e n ) *Nn
, 

( n ) *Nn
(x n ) *Nn

, such that we have: 

0 x 2n max{a 1n ; (1+b 1n )x 1n +e n x n +d n }, nN*,    (1) 

a n , b n , c n , e n  , x n  0,  n , a n  1,  nN*,    (2) 

a n 0, 


1n

b n <+  , 


1n

e n <+  , 


1n

c n =+  , 


1n

 n <+  ,                        
   (3) 

d n = n - c n ,  nN*, d n R,    (4) 

(x n ) *Nn
is bounded, 0 x n K,  nN*.    (5) 

 Hence  x n  
n

0. 

PROOF: From (1) and  (5) we have: 0  x 2n max{a 1n ; (1+b 1n )x 1n +e n K+d n }, 

 nN*,  

Note that:  e n K+d n = d
~

n                                                                                          (6) 

so we have  0 x 2n max{a 1n ; (1+b 1n )x 1n + d
~

n}, nN*,  

with  d
~

n = e n K+ n - c n ,  nN*,     (7) 

we add another note:    e n K+ n = 
~

n                                                                 (8) 

Using these notes (7) becomes: 

0 x 2n max{a 1n ; (1+b 1n )x 1n +
~

n - c n }, nN*,    (9) 

with d
~

n =
~

n - c n ,  nN*, in wich, from  (3) results that:    




1n


~

n =


1n

 (e n K+ n )=K


1n

 e n -


1n

 n <+  . 

At this stage all hypotheses of Derman and Sack’s lemma hold ([2], pag. 602), 

so  x n 0 (q.e.d.).  

 

Lemma 4. 

Let be the real sequences (a n ) *Nn
, (b n ) *Nn

, (c n ) *Nn
, (d n ) *Nn

,(e n ) *Nn
, 

( n ) *Nn
 and (x n ) *Nn

, such that we have (for a chosen and fixed K): 

1) (x n ) *Nn
is bounded, 0 x n K,  nN*, K>0, 

2) 0 x 2n min{ max{a 1n ; (1+b 1n )x 1n +e n x n +d n };K},  nN*, 

3) a n , b n , c n , e n  , x n  0,  n , a n  1,  nN*, 
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4) a n 0, 


1n

b n <+  , 


1n

e n <+  , 


1n

c n =+  , 


1n

 n <+  ,                             

5) d n = n - c n ,  nN*, d n R. 

Hence  x n  
n

0. 

PROOF: See lemma 3. 

 

We now provide the main result of this presentation, result wich is a generalization of 

one of Dvoretzky’s stochastic approximation theorem.  

 

Theorem 

Let be sequences (X n ) *Nn
,(T n ) *Nn

,(Y n ) *Nn
, such that the following conditions 

hold : X n , Y n  are random variables on a probability space  ( , K ,P), 

and  X i  are random variables, i{1,2}, and T n :R n R, X1 ,X 2  are measurables 

applications such that (X1  or X 2 ) 1 (a.s.), and the following conditions hold: 

X 1n = T n ( X 1 ,X 2 ,…, X n )+ Y n  (a.s.)      (1) 

E[Y n | X 1 ,X 2 ,…, X n ]=0 (a.s.),  nN*,      (2) 




1n

E[Y n

2 ]<+  , 
     (3) 

|T n ( x1 ,x 2 ,…, x n )|max{ n ; (1+  n )|x n |+e 1n |x 1n |- n },  

 n(N*-{1}). 

     (4)                        

Let be the sequences  ( n ) *Nn
,( n ) *Nn

,( n ) *Nn
, (e n ) *Nn

, such that: 

 n  
n

0, 


1n

 n <+  , 


1n

e n <+  ,


1n

 n =+  , and  

 n >0,  n  0,  n  0, e n  0,  nN*,   n  1,      (5) 

| Y n |  n  (a.s.). Note that K=max{ X 1 ,X 2 },                                                          (6) 

and suppose that: 

 n + e n 
K

1
 (|Y 1n |-  n )  (a.s.),  n(N*-{1}. 

     (7) 

So we have:   

a)(X n ) *Nn
is bounded (a.s.), | X n |K, (a.s.) n(N*-{1} and 

b)X n  
n

0 (a.s.). 

PROOF: 

As in the demonstration of theorem 1. from ([2], pp. 603), we suppose that: 




1n
2

1

n
E[Y n

2 ]<+     
        (8) 

We define the random variables: 

Z n =sign(T n ( X 1 ,X 2 ,…, X n )) Y n  

Hence for  Z n  (2), (3) and  (4) hold. 

But from  (2) and  (3) we have (as in  [2], pp. 603): 




1n

Z n =convergent  (a.s.) and  | Z n |=| Y n |   
  (9) 
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From  (8), the Cebisev inequality and the  Borell-Cantelli lemma  we have: 

| Z n |  n   (a.s.)                                                                                                    (10) 

But from  (1) and  (10) we have: 

|X 1n | 2 n , dacă |T n |  n and |X 1n |=|T n |+ Z n , if  |T n |> n                      (11) 

So we have (a.s.): 

0 |X 1n |max{2 n ;|T n |+Z n }  

max{2 n ;(1+  n )|X n |+e 1n |X 1n   
|+Z n - n } 

    

(12) 

If we note: 

|X n |=x n , a n =2 n , b n = n , c n = n ,  n =Z n , d n = n - c n ,   

then all the conditions from the hypoteses in lemma 1. hold, we have:  

(|X n |) *Nn
 is bounded and  

| X n |K,  nN*                                                                                                 (13) 

But from  (12) and (13) we have: 

0 |X 1n |max{2 n ; (1+  n )|X n |+e 1n K+ Z n - n }= 

= max{2 n ; (1+  n )|X n |+(e 1n K+ Z n )- n }                                                  

   (14) 

But 


2n

 (e 1n K+ Z n )=K


2n

 e 1n +


2n

 Z n <+  (see. (9)).                                     

If we note: 

a n =2 n , b n =  n , c n = n ,  n =Ke n + Z n , x n =| X n |                                   (15) 

then, using the notes from (15) it results that all the conditions from the hypotheses in 

lemma 2. (or in lemma 1 of  Derman and Sacks from [2], pp. 602), so we have: 

x n  
n

0, that is | X n |  
n

0 (a.s.), so  X n  
n

0 (a.s.) (q.e.d.).  
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1. INTRODUCTION 

 

Consider X  a non-negative absolutely continuous random variable with the 

probability density function (PDF) )(xf , the cumulative distribution function (CDF) 

)(=)( xXPxF  , and the reliability function (RF) )>(=)( xXPxF . 

Let )[0,t  and w  a real nonnegative measurable function defined on ).[0,  

Let )}(<)(,<0|),{(= 212121 tFtFttttD  . 

For any given pair Dtt ),( 21 , the conditional random variable )( 21 tXtX   has 

the PDF ),;( 21 ttxf , the CDF ),;( 21 ttxF  and the RF ),;( 21 ttxF  given by  

,
)()(

)(
=),;(,

)()(

)(
=),;(

12

21

12

21
tFtF

xF
ttxF

tFtF

xf
ttxf


 

.allfor,
)()(

)(
=

)()(

)(
=),;( 21

2112

21 txt
tFtF

xF

tFtF

xF
ttxF 


 

(1) 

 

The Shannon entropy proposed by Shannon [45] (1948) is defined as  

.)(ln)(=)(
0

dxxfxfXH 


  (2) 

Remark 1.1 In all definition from this paper we assume that the integrals exist, and 

we use the notational convention 0=0ln0  and 0=0/0 .  

 The concept of entropy was proposed as a measure of the amount of information 

supplied by a random variable X  or a probabilistic experiment. It has numerous 

extensions to other entropy-type measures, some of these will be presented below. 

mailto:preda@fmi.unibuc.ro
mailto:costel.balcau@upit.ro
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In the next sections we present the residual and past entropy-types measures based on 

CDF and RF, the cumulative entropies, the cumulative relative entropies and inaccuracy 

measures. 

 

2. WEIGHTED, RESIDUAL AND PAST ENTROPIES 

 

The weighted entropy, referred by Di Crescenzo and Longobardi [9] (2006) in 

agreement with Beli s  and Guia s u [4] (1968), is defined as  

.)(ln)()(=)(
0

dxxfxfxwXHw 


  (3) 

The residual entropy (RE) proposed by Ebrahimi and Pellerey [13] (1996) is defined 

as  

dxtxftxftXRE
t

),;(ln),;(=);( 


.
)(

)(
ln

)(

)(
= dx

tF

xf

tF

xf

t




  (4) 

The past entropy (PE) proposed by Di Crescenzo and Longobardi [7] (2002) is 

defined as  

dxtxftxftXPE

t

);0,(ln);0,(=);(
0

 .
)(

)(
ln

)(

)(
=

0

dx
tF

xf

tF

xf
t

  (5) 

The weighted residual entropy (WRE) proposed by Di Crescenzo and Longobardi 

[9] (2006) is defined as  

dxtxftxfxtXWRE
t

),;(ln),;(=);( 


.
)(

)(
ln

)(

)(
= dx

tF

xf

tF

xf
x

t




  (6) 

The weighted past entropy (WPE) proposed by Di Crescenzo and Longobardi [9] 

(2006) is defined as  

dxtxftxfxtXWPE

t

);0,(ln);0,(=);(
0

 .
)(

)(
ln

)(

)(
=

0

dx
tF

xf

tF

xf
x

t

  (7) 

These weighted entropies are suitable to describe dynamic information of random 

lifetimes, in analogy with the entropies of residual and past lifetimes introduced in [13] 

and [7], respectively. 

 

3. CUMULATIVE ENTROPIES 

 

The cumulative residual entropy (CRE) proposed by Rao, Chen, Vemuri, Wang 

[41] (2004) is defined as 

.)(ln)(=)(
0

dxxFxFXCRE 


  (8) 

The CRE is an alternative measure of uncertainty in the random variable X  that 

enjoys many of the properties of Shannon entropy and has some advantages such us is 

always non-negative, can be easily computed from sample data and these computations 

asymptotically converge to the true values.  
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Like as the Shannon entropy the CRE can be used to construct probability 

distributions by applying the Maximum Entropy Principle introduced in 1957 by Jaynes 

[18, 19]. For example, Rao [42] (2005) obtains a general result for characterization of 

MAX-CRE distributions and applies this result to construct the uniform distribution and 

the Weibull distribution. 

Drissi, Chonavel and Boucher [12] (2008) generalize the definition of CRE to the case 

of random variables with supports that are not restricted to positive values. 

The dynamic cumulative residual entropy (DCRE) proposed by Asadi and 

Zohrevand [2] (2007) is defined as  

dxtxFtxFtXDCRE
t

),;(ln),;(=);( 


.
)(

)(
ln

)(

)(
= dx

tF

xF

tF

xF

t




  (9) 

 The DCRE is a measure of the information in the residual life distribution. The 

authors show that the CRE and the DCRE is connected with some well-known reliability 

measures such as the mean residual lifetime and the hazard rate. Also, they prove that if 

the );( tXDCRE  is an non-decreasing function on t  then it characterizes the underlying 

distribution function uniquely. 

The cumulative past entropy (CPE) proposed by Di Crescenzo and Longobardi [10] 

(2009) is defined as  

.)(ln)(=)(
0

dxxFxFXCPE 


  (10) 

The CPE is also non-negative and it is useful to measure information on the inactivity 

time of a system, being appropriate for the systems whose uncertainty is related to the 

past. 

The dynamic cumulative past entropy (DCPE) proposed by Di Crescenzo and 

Longobardi [10] (2009) and by Navarro, Del Aguila and Asadi [37] (2010) is defined as  

dxtxFtxFtXDCPE

t

);0,(ln);0,(=);(
0

 .
)(

)(
ln

)(

)(
=

0

dx
tF

xF

tF

xF
t

  (11) 

The interval entropy (IH) proposed by Sunoj, Sankaran and Maya [47] (2009) is 

defined as  

dxttxfttxfttXIH

t

t

),;(ln),;(=),;( 2121

2

1

21  .
)()(

)(
ln

)()(

)(
=

1212

2

1

dx
tFtF

xf

tFtF

xf
t

t


  (12) 

The weighted cumulative residual entropies (WCRE) proposed by Misagh, Panahi, 

Yari, Shahi [33] (2011) is defined as  

.)(ln)(=)(
0

dxxFxFxXWCRE 


  (13) 

The weighted cumulative past entropies (WCPE) proposed by Misagh, Panahi, 

Yari, Shahi [33] (2011) is defined as  

.)(ln)(=)(
0

dxxFxFxXWCPE 


  (14) 
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The authors present various properties of this measure, including its connection with 

weighted residual and past entropies and obtain some upper and lower bounds. 

The interval cumulative residual entropies (ICRE) proposed by Khorashadizadeh, 

Rezaei Roknabadi and Mohtashami Borzadaran [25] (2013) is defined as  

dxttxFttxFttXICRE

t

t

),;(ln),;(=),;( 2121

2

1

21  .
)()(

)(
ln

)()(

)(
=

2121

2

1

dx
tFtF

xF

tFtF

xF
t

t 
  (15) 

The interval cumulative past entropies (ICPE) proposed by Khorashadizadeh, 

Rezaei Roknabadi and Mohtashami Borzadaran [25] (2013) is defined as  

dxttxFttxFttXICPE

t

t

),;(ln),;(=),;( 2121

2

1

21  .
)()(

)(
ln

)()(

)(
=

1212

2

1

dx
tFtF

xF

tFtF

xF
t

t


  (16) 

The authors present some properties and characterization of this measures, including 

its connections with doubly truncated Shannon entropy and mean residual life. 

The weighted cumulative residual entropies (WCRE) proposed by Suhov and 

Yasaei Sekeh [46] (2015) is defined as  

.)(ln)()(=)(
0

dxxFxFxwXWCREw 


  (17) 

The weighted cumulative past entropies (WCPE) proposed by Suhov and Yasaei 

Sekeh [46] (2015) is defined as  

.)(ln)()(=)(
0

dxxFxFxwXWCPEw 


  (18) 

The interval weighted cumulative residual entropy (IWCRE) of the random 

variable X  at interval ],[ 21 tt  with the weight function w  is defined by Sekeh, Borzadran 

and Roknabadi ([51]) (2015)  

dxttxFttxFxwttXIWCRE

t

t

w ),;(ln),;()(=),;( 2121

2

1

21   

.
)()(

)(
ln

)()(

)(
)(=

2121

2

1

dx
tFtF

xF

tFtF

xF
xw

t

t 
  

(19) 

The interval weighted cumulative (past) entropy (IWCE) of the random variable 

X  at interval ],[ 21 tt  with the weight function w  is defined by Sekeh, Borzadran and 

Roknabadi ([51]) (2015)  

dxttxFttxFxwttXIWCE

t

t

w ),;(ln),;()(=),;( 2121

2

1

21   

.
)()(

)(
ln

)()(

)(
)(=

1212

2

1

dx
tFtF

xF

tFtF

xF
xw

t

t


  

(20) 
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4. CUMULATIVE RELATIVE ENTROPIES AND INACCURACY MEASURES 

 

Consider X  and Y  two non-negative absolutely continuous random variables with 

the probability density functions (PDFs) )(xf  and )(yg , the cumulative distribution 

functions (CDFs) )(=)( xXPxF   and )(=)( yYPyG  , and the reliability functions 

(RFs) )>(=)( xXPxF  and )>(=)( yYPyG  respectively. Let )[0,t  and 

)}(<)(),(<)(,<0|),{(= 21212121 tGtGtFtFttttD  . 

For any given pair Dtt ),( 21 , consider the conditional random variable 

)( 21 tXtX   with the PDF ),;( 21 ttxf , the CDF ),;( 21 ttxF  and the RF ),;( 21 ttxF  

defined in the first section and the conditional random variable )( 21 tYtY   has the 

PDF ),;( 21 ttyg , the CDF ),;( 21 ttyG  and the RF ),;( 21 ttyG  given by  

,
)()(

)(
=),;(,

)()(

)(
=),;(

12

21

12

21
tGtG

yG
ttyG

tGtG

yg
ttyg


 

.forall,
)()(

)(
=

)()(

)(
=),;( 21

2112

21 tyt
tGtG

yG

tGtG

yG
ttyG 


 

(21) 

The relative entropy, Kullback-Leibler divergence, Kullback-Leibler 

discrimination information proposed by Kullback and Leibler [27] (1951) is defined as  

.
)(

)(
ln)(=),(

0

dx
xg

xf
xfYXD 



 (22) 

Developing the Shannon entropy, the authors have the idea to compare the entropy 

inside a family of probability measures, instead of considering the entropy corresponding 

to only one probability measure. 

The Kerridge measure of inaccuracy proposed by Kerridge [24] (1961) is defined as  

dxxgxfYXH )(ln)(=);(
0




 ).(),(= XHYXD   (23) 

The weighted inaccuracy measure proposed by Taneja and Tuteja [48] (1986) is 

defined as  

.)(ln)(=);(
0

dxxgxxfYXWH 


  (24) 

The residual relative entropy proposed by Ebrahimi and Kirmani, [15] (1996) is 

defined as 

dx
txg

txf
txftYXRD

t
),;(

),;(
ln),;(=);,(








.
)()/(

)()/(
ln

)(

)(
= dx

tGxg

tFxf

tF

xf

t




 (25) 

The past relative entropy proposed by Crescenzo and Longobardi, [8] (2004) is 

defined as  

dx
txg

txf
txftYXPD

t

);0,(

);0,(
ln);0,(=);,(

0

 .
)()/(

)()/(
ln

)(

)(
=

0

dx
tGxg

tFxf

tF

xf
t

  (26) 
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The dynamic measure of inaccuracy proposed by Taneja, Kumar and Srivastava 

[49] (2009) is defined as  

dxtxgtxftYXRI
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The weighted residual inaccuracy measure proposed by Kumar and Taneja [48] 

(2012) is defined as   
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where   
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represents the weighted residual relative entropy. 

The past inaccuracy measure (PI) proposed by Kumar and Taneja [48] (2012) is 

defined as  

dxtxgtxftXPI

t
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The weighted past inaccuracy measure (WPI) proposed by Kumar and Taneja [48] 

(2012) is defined as  
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represents the weighted past relative entropy. 

The cumulative residual inaccuracy (CRI) proposed by Taneja and Kumar [50] 

(2012) is defined as  

dxxGxFYXCRI )(ln)(=),(
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
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 (34) 

represents the cumulative residual relative entropy. 
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The dynamic cumulative residual inaccuracy (DCRI) proposed by Taneja and 

Kumar [50] (2012) (a version was also introduced by Chamany and Baratpour (2014)) is 

defined as  

dxtxGtxFtYXDCRI
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represents the dynamic cumulative residual relative entropy. 

The interval relative entropy proposed by Misagh and Yari, [35] (2012) is defined as 
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Here was proposed a measure of discrepancy between two lifetime distributions at the 

interval of time in base of Kullback-Leibler discrimination information. They studied 

various properties of this measure, including its connection with residual and past 

measures of discrepancy and interval entropy, and they obtained its upper and lower 

bounds. 

The cumulative past inaccuracy (CPI) proposed by Kumar and Taneja [29] (2015) 

is defined as  

dxxGxFYXCPI )(ln)(=),(
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where  
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 (39) 

represents the cumulative past relative entropy. 

The dynamic cumulative past inaccuracy (DCPI) proposed by Kumar and Taneja 

[29] (2015) (received at 15 April 2014, accepted at 12 march 2015 and was published in 

december 2015 in J.T.S.A.) and Kundu, Di Crescenzo and Longobardi [31] (2016) 

(received at 28 March 2014, accepted at 2 August 2015 and was published in 2016 in 

Metrika) is defined as  
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where  
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represents the dynamic cumulative past relative entropy. 

The interval inaccuracy measure (II) proposed by Kundu [30] (2015) is defined as  
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The weighted interval inaccuracy measure (WII) proposed by Kundu [30] (2015) is 

defined as  
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The interval cumulative residual inaccuracy (ICRI) proposed by Kundu, Di 

Crescenzo and Longobardi [30] (2016) is defined as  
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The interval cumulative past inaccuracy (ICPI) proposed by Kundu, Di Crescenzo 

and Longobardi [30] (2016) is defined as  
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CONCLUSIONS 

 

In this paper we present a review of cumulative entropies from reliability theory. First 

we present the Shannon entropy concept proposed by Shannon [45] and then we present 

the residual and past entropy-types measures based on CDF and RF, the cumulative 

entropies, the cumulative relative entropies and inaccuracy measures. 
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1. INTRODUCTION 

 

The Hodrick-Prescott (HP) filter is a tool commonly used in macroeconomics, and it 

is very usefull to extract a trend component from a time series.In this survey we point out 

the main results from [1] obtained until now for this type of filter and draw some lines of 

future research in order to obtain new results. Sakarya and de Jong [1] obtained a new 

representation of the transformation of the data which is implied by the HP filter. This 

representation is useful to analyze the properties of the HP filter without relying on 

ARMA based approximation, which was used in the literature before. Also, we focus on 

the characterization of the large T  behavior of the HP filter and some conditions under 

where it is asimptotically equivalent to a symmetric weighted average with weights 

independent of sample size. 

Sakarya and de Jong [1] found that the cyclical component of the HP filter also has a 

weak dependence property when the HP filter is applied to a stationary mixing process, a 

linear deterministic trend process and/or a process with a unit root. The HP filter is a good 

tool to achieve weak dependence in time series. One of the techiques that we will pay an 

important role in our research is the large smoothing parameter approximation of the HP 

filter, which is derived in [1]. Using this approximation, authors found an alternative 

justification for the procedure given in 2002 in [2] (for more information, see [1]) for 

adjusting the smoothing parameter for the data frequency. 
 

 

2. MAIN RESULTS REGARDING THE HODRICK-PRESCOTT FILTER 

 

2.1 The Hodrick-Prescott filter. The Hodrick-Prescott filter represents a standard 

tool in macroeconomics, very useful for separating the long trend in data series from short 

run fluctuations. 
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The HP filter smoothed series )( 21 TTTTT
ˆ,...,ˆ,ˆˆ    as defined and described in 

economics by Hodrick and Prescott [3,4] results from minimizing, over all TR , the 

function 

,y
T

t

ttt

T

t

tt 









1

2

2

11

1

2 )2()(   (1) 

 

where T  denotes the sample size,   is the nonnegative smoothing parameter so that for 

quarterly data is often chosen to be equal to 1600, and t

ty,...,y,yy )( 21  represents the 

data series to be smoothed. 

In [5] a similar filtering technique has been introduced, according to [1]. Usually, Tt̂  

is referred to as the trend component, while TttTt
ˆyĉ   is called the cyclical component. 

As stated in [1], there exists a unique minimizer to the minimization problem descried by 

equation (1), so that, for a known positive defined )( TT   matrix TF , by letting TI  

denote the )( TT   identity matrix, TtTT
ˆIFy  )(   and  

yIFˆ
TTTt

1 )(    (2) 

  

Therefore, the trend component Tt̂  and the cyclical component Ttĉ  are both weighted 

averages of ty  and according to [1] we have: 



T

s

sTtsTt ywˆ
1

 . 

For notational convenience, the dependence of Ttsw  and Tt̂  with respect to   is 

suppressed. One of the purposes set in [1] is to find a new representation for Ttsw  and 

provide immediate consequences of this representation. This approach eliminates the 

inability to derive a simple analytical formula for the elements of 1 )(  TT IF , fact that 

prevented other researchers to find a simple expression for the weights that are implicit 

for the HP filter (for more information, see [1]).  

We shall notice first of all, that: 1)()111( 2121  TTtTTt y,...,y,yˆy,...,y,yˆ  , so 

this means that 1
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Tt )21(  and 

therefore we have that: tsw
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
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1

, for }21{ T,...,,t . 

Sakarya and de Jong [1] remarked that a quadratic trend is not absorbed in Tt̂  in this 

way. They also noticed that previous literature regarding the HP filter is only based on the 

observation that the first order condition for }23{  T,...,t,ˆ
Tt , is given by: 
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 (3) 

Let B  denote the forward operator and B  the backward operator, then according to [1], 

this simplifies to the following relation: 

,ˆBBBBy Ttt  )4)61(4( 22

  (4) 
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which can also be re-written as: 

.ˆ|B|y Ttt  )11( 4   (5) 

 

Papers that analyze the HP filter based on the first order condition, according to [1], are 

for example [6-10]. 

 

2.2 On the weights of a Hodrick-Prescott filter. In this subsection we shall refer to 

section 2 from [1] in order to show how the exact weights Ttsw  implied by the HP filter 

have been derived. The approach is based on minimizing the function provided in (6) 

over )( 21 T,...,,  , for a basis of functions R[0,1]:jp , for Nj,t , rather than  

minimizing the function from (1) over  : 
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where )( 21 T,...,,'    and ))()()(( 21 T
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Tt p,...,p,pp  . By differentiating (6) with 

respect to  , the minimizer ̂  derived in [1] is given by: 
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If an inverse exists, the minimize ̂  can be expressed as follows: 
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In what follows, TI  denotes the identity matrix of dimension )( TT  . 
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and  
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The proof of this result can be found in the Mathematical Appendix of [1]. 

As authors in [1] point out, the importance of this result that the matrix to be inverted is 

now ‘close’ to an easily invertible diagonal matrix (in the way that two matrices of rank 1 

have been added to the diagonal matrix). 

Remark. The difference from the classical approaches which can be found in 

literature is the fact that they minimize equation (1) over  , and no such structure occurs, 

as the one mentioned above. 

It is well known from the literature that explicit formulas can be obtained for the 

inverse of the sum of a matrix plus another matrix of rank 1, and such results can be 

adapted to deal with the inverse of a matrix plus a matrix of rank 2 as well. The main 

purpose of [1] and also of [11] is to use such a result, to obtain a tractable expression for 
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We also define, similarly to [1], the following sequences: 
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and 
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with 1|)0(| Tf  and for any }21{ T,...,,m , 
3|)(|  CmmfT , for some constant C  not 

depending on T . 

  

3. FUTURE WORK ON HP FILTER 

 

Future work will be continued for the mathematical properties of the Hodrick-Prescott 

filter and find other original calculations of the explicit weights of this filter. We aim to 

obtain a weak law of large numbers result for functions of the cyclical component.Also, 

for future research we want to analyze what happens when the sample size and the 

smoothing parameter are large, independent of what the authors did in [1], and we want to 

obtain a new procedure for adjusting the smoothing parameter for the data frequency (a 

similar procedure was obtained also in [2]). We keep in mind that it is possible to utilize 

the HP filter in combination with other types of filters used in DSP, optimizing the whole 

filtering process. Also we will review the properties of the HP filter that will helps us in 

our future work: 

• The cut-off region is not steep; this means that leakage from cycles just outside 

the target region can be significant. 

• In engineering applications filter leakage represents a sign of a poor filter.  

• Still, in business cycle analysis, researchers have arguments to support at least a 

small degree of desirable leakage.  

• The frequency band of 1.5 to 8 years has been selected based on the expert 

decision. 

• The boundaries 1.5 and 8 years should not be regarded as carved in stone.  

• The filter leakage for example will allow strong 9 year cycles to appear in the 

filtered series. 

• The HP filter is asymmetric. Except the central values the double HP filtered 

series are phase shifted compared to the underlying ideal cycle. Also the phase 

shifts fade out for a given data as newer data arrive. 
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CONCLUSIONS 

 

This survey paper points out the new mathematically rigorous results and  properties 

of the HP filter obtained by the authors in [1] and also establishes new lines of research  

in this field, having set for the future, clear objectives for what kind of results to be 

obtained. We also discuss about future possible applications of the Hodrick-Prescott filter 

in DSP, justifying this in section 3. 
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Abstract: Exponential distribution is one of the widely used continuous distributions in various 

fields for statistical applications. In this paper we study the exact and asymptotical distribution of 

the scale parameter for this distribution. We will also define the confidence intervals for the 

studied parameter as well as the fixed length confidence intervals. 
 

1. INTRODUCTION 

 

Exponential distribution is used in various statistical applications. Therefore, we often 

encounter exponential distribution in applications such as: life tables, reliability studies, 

extreme values analysis and others. 

In the following paper, we  focus our attention on the exact and asymptotical 

repartition of the exponential distribution scale parameter estimator. 

 

2. SCALE PARAMETER ESTIMATOR OF THE EXPONENTIAL 

DISTRIBUTION 

 

We will consider the random variable X with the following cumulative distribution 

function: 

 

F( ; ) 1      ( 0 ,  0)
x

x e x 

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where  is an unknown scale parameter 

Using the relationships between 
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a theoretical variation coefficient 
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
   . This is a useful indicator, especially if 

you have observational data which seems to be exponential and with variation coefficient 

of the selection closed to 1. 

If we consider 1 2, ,... nx x x  as a part of a population that follows an exponential 

distribution, then by using the maximum likelihood estimation method we obtain the 

following estimate  
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Since  ˆM   , it follows that ̂  is an unbiased estimator for . Similarly, because  

2
2 ˆ( )D

n


   and 

2

lim 0
n n




 , we obtain that ̂  is an  absolutely  correct estimator. 

 

The efficiency of the estimator ̂  can be calculated using the following formula:  
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where  
1

( ; ) ( 0 ,  0)
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f x e x 
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    is the probability density function of the 

exponential distribution. After the calculation we obtain 
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and thus ˆ( ) 1ne    which implies that ̂  is also an efficient estimator. 

Taking into account the reproducibility property of the exponential distribution we can 

calculate the exact distribution of the random variable ̂ . 

 A sum 1 2 ... nX X X   , consisting of n randomly selected variables, all 

exponentially distribuited, has a distribution density function  equal to 
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This leads us to the cumulative distribution function     
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from which we obtain that the distribution density function of the estimator ̂  is equal to  
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From the above we obtain that 
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By using the central limit theorem we can state that the random variable X  follows a 

normal distribution with the parameters   and 
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Based on this we can calculate the asymptotical cumulative distribution function for 

the estimator ̂ ,  

 
ˆ( ) lim ( ) lim ( )n

n n
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This shows that the estimator ̂  has the same asymptotical distribution as X  and  a  

distribution density function  equal to:   
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Using the asymptotical distribution of the estimator ̂  we can determine the 

confidence intervals for the scale parameter . To do this we need to consider the reduced 

normal random variable 
ˆ( ) n

Z
 
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
  and the significance level . 

By definition we will get 
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 is the 
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   quartile of the standard normal distribution. Equation (9) can be 

rewritten  such as 
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We may assume that 2
1

1 0
Z

n



   because we deal with asymptotical distribution and thus 

n is sufficiently high. After carrying out the calculation we obtain for the parameter   the 

following confidence interval which depends on the maximum likelihood estimation ̂  
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3.  SET LENGTH CONFIDENCE INTERVALS FOR THE SCALE PARAMETER 

 

Using a similar method to that which Stein proposed for the double selection method 

we find a set length confidence interval   for the parameter . 

Let p be a system of independent selections, each with a volume n, taken from a 

population which has the same exponential distribution as the random variable X 
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These selections allow us to obtain independent and identical assigned estimators  
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 Next let us consider a second system with m independent selections, each of volume 

n, taken from a population which has the same exponential distribution as the random 

variable  X 
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These new selections allow us to calculate m independent and identically assigned 

estimators  
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Let ̂  be the calculated average of both selection systems: 
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   and 2s  is the variance of random variable  ̂  considered in 

equation 2, we deduce the following equation 
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Also the random variable ̂  matches with the reduced random variable through the 

following equation: 
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The random variables from equations (17) and (18) are independent and thus we can 

consider the following ratio 
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where  1pt   is a Student random variable with p-1 degrees of freedom.  

For the significance level  we have the following equation: 
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from which we deduce the following confidence interval for    
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The length of this interval can be easily calculated and is equal to  
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The length of this interval must not be greater than the considered length .  

We will start with m=0 and compare the length l  with  .  If l   then the interval 
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system. 

If l  , we need to carry out the second selection system, where m is equal with the 

smallest integer  for which 2
ˆ ; 1

2
p

s t

m p






 



. In this case 

1 1ˆ ˆ;
2 2

   
 

  
 

 will be the 

confidence interval for   of size , build on both selection systems and having a 

confidence coefficient greater then 1-. 
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Due to the amazing rate of growing of computer science, the theory of difference 

equations, used to numerically approximate and to obtain properties of solutions for 

various kinds of differential equations, has received much attention in the last decades. 

Thus, the idea of elaborating of a comprehensive material on this subject, containing 

the basic notions related to difference equations, is more than welcome. 

Besides, for the beginners in the field and not only, putting, together with theoretical 

elements, of a section concerning a large number of applications to different branches of 

elementary and advanced mathematics, of computer science and many other areas makes 

the subject of this book even more interesting. 

Combining their teaching and research experience, the authors provide a well 

organized, pedagogical approach, although  many theoretical results are only stated 

without proof given the amplitude of the theory and the large number of notions taken 

into consideration. 

The material is divided into two main sections: theory, respectively applications. 
The first chapter, entitled “Ecuații cu diferențe”, introduces the difference and 

antidifference operators, gives their basic properties and examples, then presents Cauchy 

problems and problems with conditions at the boundary associated to difference equations. 
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Afterwards, the authors focus on classical methods as well as on operational methods, 

based on MacLaurin or Z transforms, for solving linear (or reducible to linear) difference 

equations. In this part, the discussion is given in full detail, with definitions, proofs and 

tables of properties together with useful examples. 

The next part of this chapter is concerned with the matter of stability for dynamical 

systems; namely, different types of stability are obtained for linear difference equations 

and also for nonlinear such equations.  

A list of solved problems and a number of problems proposed to the reader ends this 

theoretical section. 

Chapter 2 represents, in the opinion of the reviewer, the strong point of the book. It 

contains applications of the theory previously described to a large number of practical 

problems. 

For example, elementary exercises containing recurrences for sequences of real 

numbers can be solved in a very elegant manner by regarding them as difference 

equations and applying specific methods (such as, operational methods). 

Also, the problem of calculating powers of square matrices reduces to the solving of 

appropriate difference equations. 

A whole subchapter is devoted to an interesting application to the novel theory of 

automatic voice recognition using Fourier transform. It can be seen from the study 

developed in this part that the calculus of Mel Frequency cepstral coefficients can be 

reduced to the solving of a difference equation. Moreover, these coefficients can be 

calculated more accurately with this method comparing to classical methods (such as, 

Linear Predictive Coding). 

Of special practical importance, coming from the remark that ODEs are an essential 

feature in the mathematical modeling, is the discussion concerning the solving of ODEs 

via numerical schemes that lead to difference equations (see also [3]). Such numerical 

schemes are described and also their convergence, stability and the precision of the 

obtained approximation are rigorously studied.  

Therefore, the case of ODEs with impulses at preassigned moments (which are, in fact, 

a mix between differential equations and difference equations) can also be studied 

through the theory of difference equations. Here the general theoretical results are only 

recalled from literature ([1]), emphasis being then put on the framework of linear 

differential equations with impulses where numerical schemes are detailed. It seems 

worthwhile to notice that impulsive problems occur in a huge number of fields (such as, 

biology, automatics, electronics and so on, see [2]). 

The second chapter ends in the same (pedagogical) manner: with a list of solved or 

proposed to be solved exercises. 

To conclude, the book under review has got all the premises to become a very useful 

tool for students in engineering, at master or PhD level, but also for researchers working 

in applied mathematics and related fields. 
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5. CHAPTERS TITLES 

 

The chapters are countered beginning with Arabic figures and printed in capitals      

(1. XXXXXXXX), using the style: font: Times New Roman, 12 pt., bold, all caps; 

paragraph: alignment: centered; spacing: after − 12 pt. 

 

6. PAPER TEXT 

 

Font: Times New Roman, 12 pt. Paragraph: alignment: justified. Paragraphs will be 6 

mm indented. Line spacing: single. 

6.1 The main part of the text. Original and high-standard scientific papers shall be 

drawn up in a concise style, avoiding any oversized introduction. 

 

7. FIGURES, TABLES 

 

Figures and Tables shall be introduced at their appropriate place in the text and shall 

not be larger than a page width each. The legend of figures is included bellow the figure 

(centered) and for tables before (align text right), both with the style: Font: Times New 

Roman, 10 pt., regular; paragraph: spacing: before − 10 pt., after − 10 pt. 

Landscape tables are not accepted. If you need to arrange a number of figures, a good 

tip is to place them in a table, which gives you additional control of the layout. Leave a 

line space (12 pt.) between your figure and any text above it, like this one: 

 

 

 

(a) (b) 

FIG. 1. The text “FIG. 1.,” which labels the caption, should be bold and in upper case. If figures have 

more than one part, each part should be labeled (a), (b), etc. Using a table, as in the above example, helps 
you control the layout 

 

Cite all figures in the text consecutively. The word “Figure” should be spelled out if it 

is the first word of the sentence and abbreviated as “Fig.” elsewhere in the text. Place the 

figures as close as possible to their first mention in the text at the top or bottom of the 

page with the figure caption positioned below, all centered. Figures must be inserted in 

the text and may not follow the Reference section.  

Set figure captions in 10 point size, Times Roman font. Type the word “FIG. 1.” in 

bold uppercase, followed by a period. 

Authors are welcome to use color figures within their article.  
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      Table 1. Example of table 

 

 f1 f2 f3 f4 

First set of values 0.8 0.6 0.4 0.2 

Second set of values 1.1 1.0 0.9 0.8 

 

8. EQUATIONS AND FORMULAS 

 

It is strongly recommended to use a table with one row and two columns: in the first 

column, one writes the equation and in the second, the equation’s number. Table: Insert 

table: number of columns: 2; number of rows: 1; alignment column 1: align text left, 

alignment column 2: align text right, format border: none, spacing after: 12 pt., 
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Table 2 – For formulas and equation, use only a Microsoft Equation Editor 3.0  with these settings: 

 

Format + Spacing 

Line spacing 150% 

Matrix row spacing 150% 

Matrix column spacing 100% 

Superscript height 45% 

Subscript height    25%  

Limit height 25% 

Limit depth 100% 

Spacing adjustment 100% 

Embellishment gap 1.5 pt. 

Style + Define 

Text Times New Roman 

Function  Times New Roman 

Variable Times New Roman italic 

LC. Greek Symbol italic 

UC. Greek Symbol 

Symbol Symbol 

Matrix + Vector Times New Roman  bold  

Number Times New Roman 

Size + Define 

Full 12 pt. 

Subscript/Superscript 7 pt. 

Sub-Subscript/Superscript 5 pt. 

Symbol 18 pt. 

Sub-Symbol 12 pt. 

 

CONCLUSIONS 

 

As the author and creator of your article (doc, docx), you have the most intimate 

knowledge of exactly what the file should display. We ask all authors to carefully check 

their article prior to submission. Perform visual inspections to detect subtle font errors 

and ensure that all fonts are embedded.  
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