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Abstract: The described representation of a fuzzy system enables an approximate functional 

characterization of the inferred output of the fuzzy system. With polynomial subsystem inferences, 
the approximating function is a sum of polynomial terms of orders depending on the numbers of 

input membership functions. The constant, linear, and nonlinear parts of the fuzzy inference can 

hence be identified. The present work also includes two applications which show that the 
procedure can very well approximate the differential equations. In the case of no analytical 

solution, the procedure is a good alternative. 
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1. INTRODUCTION 

 

The aim of the paper is to prove that fuzzy systems are also universal approximators 

to continuous functions on compact domain in the case of the described subsystem 

inference representation corresponding to the fuzzy systems, as in the work of Kosko 

[11], Wang [16] and later Alci [1], Kim [10]. The paper is organized as follows: the first 

section provides a brief review on product sum fuzzy inference and introduces the 

concepts of additive and multiplicative decomposable systems; the second section 

presents a subsystem inference representation; the next sections discuss the cases of 

polynomial, sinusoidal, orthonormal and other designs of subsystem inferences; the last 

section presents some conclusions on the matter. 
 

2. A FUZZY SYSTEM WITH TWO INPUT VARIABLES 

 

A fuzzy system of n input variables ,,,,, zyba   with input membership functions 

rrhhbjai mrZmhYmjBmiA ,1,,,1,,,,1,,,1,    is expressible as an additive sum 

of zyba mmmm    systems, each of which is multiplicative, and thus decomposable 

into n single variable subsystems. 

Consider a fuzzy system with two input variables a and b with rule consequents 

embedded in the ba mm  matrix 
ba mmU , from [7,8,15].  

The inferred output is [7,8,15]: 
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where: 

 

 lq ,  are the elements of the matrix ,, ba mm defined in [7,8,15]; 

        aa

q

A

q

A

q

A

q

A mqmffff ,1,21    means a set of linear independent am  

by one column vectors, selected for variable a and is associated to a subsystem  qA ; 

  q

Aa f  represents the inferred output of subsystem  qA ; 

        bb

l

B

l

B

l

B

l

B mlmffff ,1,21    means a set of linear independent bm  by 

one column vectors, selected for variable b; 

  l

Bb f  represents the inferred output of subsystem  lB . 

 

The selection of the vectors q

Af  and l

Bf  should depend on the kind of approximation 

function one desires to use for the problem at hand, be it polynomial, sinusoidal, or other 

designs. 

 

3. POLYNOMIAL SUBSYSTEM INFERENCE 

 

The vectors 
a

q

A mqf ,1,  can be selected to emulate polynomial functions (they are 

termed polynomial subsystem vectors). The resulting subsystem inference  q

Aa f  

represents the polynomial subsystem inferences. In the case of a system with n fuzzy 

variables ,,,,, zyba  having zyba mmmm ,,,,   input membership functions, the inferred 

output is an approximation to the polynomial function, which contains polynomial terms 

up to orders of 1,,1,1  yba mmm   and 1zm  in yba ,,,   and z. Conversely, the 

polynomial function can be considered as an approximate output of the fuzzy system. The 

subsystem inference representation contributes to an approximate functional 

characterization of the inferred output in the sense that as yba mmm ,,,   and zm tend to 

large values, the polynomial inferences      h

Yy

j

Bb

i

Aa fff  ,,,   and  r

Zz f  converge 

uniformly to the polynomial terms 111 ,,,  hji yba   and .1rz   

 

4. SINUSOIDAL AND EXPONENTIAL SUBSYSTEM INFERENCES 

 

Same as before for polynomial inferences, in the example of sinusoidal subsystem 

inferences, the fuzzy inferred output constitutes a piecewise linear approximation of a 

sinusoidal/ cosinusoidal function. Using the sinusoidal inferences, the approximating 

function is comprised of sine/ cosine, and cross product terms. With appropriate designs 

[7,8,15], sinusoidal inferences can be further manipulated into an orthonormal set. 

In the example of exponential subsystem inferences, the inference of the fuzzy system 

constitutes [7,8,15] a piecewise linear approximation to an exponential term. 

 

5. APPLICATIONS 

 

In the case of the first application, we shall use the polynomial and exponential 

inferences together for the fuzzy approximation of the differential equation solution 
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We shall consider the fuzzy systems with two fuzzy variables: a is for approximating 

the polynomial term of x, and variables b is for realizing the exponential term xe . 

Trapezoidal input membership functions in Fig. 1 and Fig. 2 are assumed [7] for all 

variables.  

 
FIG. 1. Trapezoidal input membership functions for the fuzzy variable a 

 

Let the domains of interest for a and b be [-0.7; 0.3] and [0.2; 0.8].  

From the Fig. 1 we can notice that:  
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and 
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For the variables a and b, one sets: 
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The inferred output of subsystem  2A will be [7,8,15]: 

 

         ,21
21

222 afaff AAAAAa    (6) 

 

namely 
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FIG. 2. Trapezoidal input membership functions for the fuzzy variable b 

 

By observing Fig. 2, we can notice that:  
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and 
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The inferred output of subsystem  2B is [7]: 
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a fuzzy system to achieve (2) is [7]: 
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where: 

  

 
 








20

20

y

y
 

 

and 2,2U is given by [7]. 

 

Equation (14) will be analytically solved in Matlab 7.0, using the function dsolve; let 

 xy1 be the analytical solution of the equation (2),  xy2  and  xy3  the analytical 

solutions of the equation (14) for    1.6092,3.00,0.4 x and respectively for 

 .3.0,0.2231x  

We shall obtain: 
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Especially in the case of having no analytical solution at hand, the new procedure is 

interesting. The Lotka-Volterra equations are also called the predator-prey equations. The 

equations are a pair of first-order, non-linear, differential equations. They are needed to 

describe [8] the dynamics of biological systems in which two species interact with each 

other.  
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One is the predator and the other, its prey. If there are not enough preys, the 

population of predators will decrease. And if the population of preys increases, the 

predator population will also increase.  

Furthermore, the Lotka-Volterra equations [6] are used in economics. Similar 

relations are established between different kinds of industries, as an example between 

engine construction and mining. Furthermore, the economic cycle in general can be 

simulated. 

They develop in time according to the pair of equations [8]: 
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where: 

 

 10y  is the number of predators (for example, lions); 

 800x  is the number of preys (for example, zebras); 

 
t

x

d

d
 and 

t

y

d

d
represent the growth of the two populations against time; 

 t represents the time; 

 3 , 1.0 , 8.0  and 002.0 are parameters representing the interaction 

of the two species. 

 

The development of each species during a certain time interval can also be described 

by the upper procedure in the form of a polynomial. The values for t should be adapted to 

the procedure. 

Fig. 3 shows that the method is useful if we seek to approximate (green) the function 

of one population(red).  

 

 

 
FIG. 3. The approximative solution of the population 

 

The number of preys can be approximated easily by using the procedure above. 
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CONCLUSIONS 

 

A new representation for fuzzy systems in terms of additive and multiplicative 

subsystem inferences of single variables is presented to prove that fuzzy systems are 

universal approximators to continuous functions on compact domain. 

This representation enables an approximate functional characterization of the inferred 

output. The form of the approximating function depends on the choice of polynomial, 

sinusoidal, or other designs of subsystem inferences.  

With polynomial subsystem inferences, the approximating function is a sum of 

polynomial terms of orders depending on the numbers of input membership functions. 

Since polynomials are universal approximators [7,8,15], the same can be concluded 

regarding fuzzy systems. 

With proper scaling, the sinusoidal inferences produce a set of orthonormal 

inferences. 

The present work also includes two applications about constructing a fuzzy 

approximator for a function expressible in terms of sums and products of functions of a 

single variable. In this case, subsystem inferences that emulate the various single variable 

functions are adopted.  

The second application [8] shows that the presented procedure can very well 

approximate a differential equation. In the case of no analytical solution the procedure, 

this is a good alternative. 
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