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Abstract: In this paper, new distributions with applications in the reliability of multi-

component systems (and not only!) are obtained using the composition of two probability 
distributions. We consider the composition between: a) truncated binary distribution (Bin(n,p)) 

with Lindley distribution (Lindley()), b) Kemp distribution (Kemp(α)) with exponential 
distribution, (Exp(λ)) and c) truncated Zipf distribution (Zipf(α,n)) with exponential distribution 

(Exp(λ)). Algorithms for numerical simulation of these probability distributions and some 

comparisons between their performances are presented. 

 

Keywords: truncated binomial discrete distribution, Kemp distribution, Zipf truncated 

distribution, inverse method, composition method, lifetime variables 

 

1. INTRODUCTION 

 
Lindley (1958, 1965) [6], [7] introduced a new probability distribution that eventually 

triggered the interest of researchers. Known as the Lindley distribution, this new distribution 

was used in modelling system reliability [2]. Many researchers, including Faton Merovci [3] 

and a group of Romanian researchers coordinated by Professor Vasile Preda [8], introduced 

some generalizations of this distribution by gaining new divisions that proved appropriate in 

modelling practical situations. It is well known that the exponential distribution has wide 

applications in reliability. These distributions will be composed of truncated binomial discrete 

distribution, Kemp and truncated Zipf [4].  

The Zipf (α, n) truncated distribution has applications in situations such as: in a statistical 

population a small number of individuals have a high frequency property, a large number of 

individuals occasionally have that property and a large number of individuals rarely have that 

property [12]. 

In this paper we consider that the lifetimes of the components of a system with n parallel- 

connected components are random and identically distributed variables (iid) with either 

Lindley distribution or exponential distribution. The number of independent components is 

also considered to be a random variable whose distribution is, in turn, Bin (n, p), Kemp (), 

respectively Zipf (α, n) [5], [11]. 

 

2. COMPOSITION OF PROBABILITY DISTRIBUTIONS 

 

2.1. The Bin-Lindley(, N, P) distribution 
The case when the lifetime variables are distributed Lindley(), ie they have the 

probability density function (PDF) 

mailto:romica.trandafir@utcb.ro
mailto:demetriu@utcb.ro
mailto:mmi@utcb.ro
mailto:vasilepreda0@gmail.com
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b) The cumulative distribution function of the maximum random variable W is 
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If random variable L represents the life of a component of a parallel-connected system 

with the same operating characteristics, variables V and W are used to determine the 

reliability of the multi-component system. 

Consider now a random variable N whose distribution is truncated binomial [4], 

denoted Bin(n, p), ie probability function 
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Suppose that n is a sample of the random variable ),(~ pnBinN  . Then we will have: 

i) the probability density function of random variable V 
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After evaluation we obtain the expression 
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FIG. 1. PDF for random variable V with different parameters 
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FIG. 3. CDF for random variable V with different parameters 

 

  
FIG. 4. CDF for random variable V with different parameters 
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FIG. 5. PDF for random variable W with different parameters 
 

  
FIG. 6. PDF for random variable W with different parameters 
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FIG. 7. CDF for random variable W with different parameters 
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With the notations above, relations (3), (4) - (7) become 

a) The cumulative distribution function of the random variable V is 
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condition fulfilled because 
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FIG. 8. PDF and CDF for random variable V with different parameters 

 
ii) Similar calculations lead to the following expressions for the of the probability density 

function and the cumulative distribution function of the random variable W 
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respectively 
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FIG. 9. PDF and CDF for random variable V with different parameters 

 

Font: Times New Roman, 14, bold, centered, in Upper cases, spacing: before – two 

lines of 14 pt., after – two lines of 14 pt. 

 

2.3. Zipf-exponential distribution Zipf_Exp(, N, ) 

Consider, like in the previous case, n random variables )(~,...,1 ExpLL n   iid and N 

a random variable having the Zipf(, n) distribution, ie its probability function is given by 
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(25) 

If we note 



n

i i
nH

1

1
);(




 

then the cumulative distribution function becomes 
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x
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Suppose N is a sample of the random variable distributed Zipf(, n). Then, similar to 

relations (3), (4) - (7) we will have: 

i) probability density function of random variable V 
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and for the cumulative distribution function 
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In the following figure are represented the graphs of the probability density function 

and the cumulative distribution function of the random variable ),,(_~  nExpZipfV   

for the parameter values 5.0,5,3   n  

 

PDF for V=min Zipf_Exp(x,,n,) CDF for V=min Zipf_Exp(x,,n,) 

  

FIG. 10. PDF and CDF for random variable V with above parameters 
 

Analogue calculations lead to the following expressions for the probability density 

function and the cumulative distribution function of the random variable W 
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respectively 
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The following figures show the graphs of the probability density function and the 

cumulative distribution function of the random variable ),,(_~  nExpZipfW   for 

values of parameters 5.0,5,3   n  

 
PDF for W=max Zipf_Exp(x,,n,) CDF for W=max Zipf_Exp(x,,n,) 

  
FIG. 11. PDF and CDF for random variable W with above parameters 

 

3. NUMERICAL SIMULATION OF RANDOM VARIABLES V / W BY MEANS 

OF THE INVERSE METHOD 

 

The following theorem is the basis of the inverse method. 

Theorem. [9] 

If )1,0(~ UU  then the random variable )U(1F  has the cumulative distribution 

function F . 
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Prove.   )1,0( u  and   ])1,0([1 Fx , the generalized inverse function checks 

  x)x( FF -1
 and  

  u)u( 1FF . Then        uxx)u(  Fxu,Fxu, 1

 

and  
      )x(xUPxUP FFF 1

. 

 

3.1. The case of the Bin_Lindley(,N,P) distribution 

i) Numerical simulation of the random variable V 

Let ),,;(~ __ pnxFV LBV   and )1,0(U ~U  be two independent random variable, then 

the above theorem is obtained UpnxF LBV ),,;(__  , ie 


X
V  , where X is the solution 

of the following equation 
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(31) 

ii) Numerical simulation of the random variable W 

Let ),,;(~ __ pnxFW LBW 
 and 

)1,0(U ~U , then, from the above theorem is 

obtained UpnxF LBW ),,;(__    , that is 


X
W  , where X is the solution of the equation 

 
0)1(

)1(11
1










p

qqU

e

X nnn

X
 (32) 

Table 1 summarizes the theoretical and empirical mean and variance obtained for 

10000 simulated variables for parameter values.  
 

Table 1. The theoretical and empirical mean and variance 

Variable 
Mean Variance 

Theoretical Empirical Theoretical Empirical 

V 0.2397 0.238 0.07411 0.07059 

W 1.22824 1.22641 0.52662 0.5219 

 

3.2. The case of the Kemp_Exp(, ) distribution 

i) Numerical simulation of the random variable V 

Let ),;(~ __ xFV EKV
 
and

 
)1,0(U U ~ , then, from the above theorem is obtained 

UxF EKV ),;(__   ie 
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ii) Numerical simulation of the random variable W 

Let ),;(~ __ xFW EKW
 

and )1,0(U ~U , then, from the above theorem is 

obtained 

UxF EKW ),;(__   ie
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Table 2 shows the theoretical mean and variance and the empirical mean and variance 

obtained for 10000 simulated variables for parameter values. 
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Table 2. The theoretical and empirical mean and variance  

Variable 
Mean Variance 

Theoretical Empirical Theoretical Empirical 

V 1.04999 1.04248 1.3195 1.33747 

W 1.48321 1.48257 1.86462 1.86015 

 

3.3. The case of the Zipf_Exp(, N, ) distribution 

The inverse simulation of the random variable V ~> Zipf_Exp (, n, ) returns to 

solving by an approximate method of the equation 

  Ue
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1
11 
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 (33) 

where  )1,0(U ~U . 

For simulation by the inverse method of the random variable W ~> Zipf_Exp (, n, ), 

it is necessary to solve by an approximate method the equation 
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n
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where  )1,0(U ~U . 

For the 10000 simulated values and for the parameters values 

5.0,5,3   n the theoretical and empirical mean and variance are presented in 

Table 3. 
 

Table 3. The the theoretical and empirical mean and variance for  =3,   =5 ,   =0.5   

Variable 
Mean Variance 

Theoretical Empirical Theoretical Empirical 

V 1.82236 1.80352 3.67365 3.60838 

W 2.20336 2.28037 4.44255 4.59143 

 

4. NUMERICAL SIMULATION OF RANDOM VARIABLES V / W STARTING 

FROM THE DEFINITION OF THESE VARIABLES 

 

4.1. The case of the Bin_Lindley(, N, P) distribution 

 We consider )1,0(U ~U and 
U

X
eUXH X

)1(

1
),,(









 . 

If X is the solution of the equation 0),,( UXH  , taking 0,  


X
x , we have a 

sample of the random variable Lindley(). 

We generate the random variable Lindley() by inverse method with the following 

algorithm. 

The Lindley(, N) algorithm  

P0. Input  - distribution parameter, N - sample volume; 

P1. For k: = 1; N 

Generate )1,0(U ~U  

T:=(U>0)  0),,30(),,0(  UHUH  ); 

If T = true then 

If 0x  then 


X
Lk : ; 

P2. Returns L; Stop! 
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Algorithm for simulation of random variables V / W distributed Bin_Lindley(, n, p) 

P0. Input: (, n, p), N-volume of the sample; 

P1. For i: = 1; N 

         Generate ),(~ pnBinm   

while  m <1 Generate )1,0(U ~U , Generate ),(~ pnBinm  ; 

L: = Lindley (, m) 

),...,max(:,),...,min(: 11 mimi LLWLLV    ; 

P3. Returns V, W; Stop! 

Applying the algorithm for n = 5, p = 0.67,  = 2, for a sample of 10000 simulated 

values, the results from Table 4 are obtained. 
 

Table 4. The theoretical and empirical mean and variance for n = 5, p = 0.67,  = 2 

Variable 
Mean Variance 

Theoretical Empirical Theoretical Empirical 

V 0.2397 0.24447 0.07411 0.07848 

W 1.22824 1.2385 0.52662 0.52374 

 

4.2. The case of the Kemp_Exp(, ) distribution 

To simulate the random variable Kemp() we can use the composition method [1]. 

Let 

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 y

y
yFY Y 0,10,

)1ln(
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)(~  and )(~ KempN   then, 

  ...,2,1,)1( 1   kyyyYkNP k that is, the distribution of the random variable N 

conditioned by Y = y is a sample of the truncated geometric random variable Geom(y). 

Prove.The distribution density of the variable Y is  


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dyydyyfyYkNPkNP

k
kk

Y
 

which means that N is a sample of the random variable Kemp(). 

To simulate the Geom (y) geometric random variable we use the inverse method as 

follows: 

,...2,1,)( 1   kqpkNP k  

and ,1)()(
1

1

1 n
n

k

k qqpnNPnF  





)1,0(~,)( U UUnF , ie 










q

U
n

ln

ln
. 

In this case yq  . 

Algorithm for simulating the Kemp() variable by the composition method 

P0. Input: , N-volume of the sample 

P1. For i: = 1; N 

Generate )1,0(U ~U  

    
Uy )1(1:   

    Generate )1,0(U ~U  

           If )()0( yUy   then 







 5.0

ln

ln
:

y

U
Ki

 

P2. Returns K; Stop! 
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Algorithm for simulating V / W variables distributed Kemp_Exp(, ) 

P0. Input: (, n, p), N-volume of the sample 

P1. For i: = 1; N 

Generate )(~ Kempm   
For j: = 1; m 

         Generate )1,0(U ~U  

      If 1U  calculate )ln(
1

: UL j


  

    ),...,max(:,),...,min(: 11 mimi LLWLLV   ; 

P3. Returns V, W; Stop! 

 

Applying the algorithm for  = 0.8 and  = 0.5, for a sample of 10000 simulated 

values, the results in Table 5. 
 

Table 5. The theoretical and empirical mean and variance for  = 0.8 and  = 0.5 

Variable 
Mean Variance 

Theoretical Empirical Theoretical Empirical 

V 1.33561 0.08242 2.74246 0.00668 

W 2.94505 7.44391 6.07521 6.20381 

 

4.3. The case of the Zipf_Exp(, N, ) distribution 

To simulate the Zipf(, n)  distribution we use a variant of the algorithm [10] 

The Zipf_invers(, n) algorithm  

P0. Input: , n-model parameters 

       j: = 0; 

       Generate )1,0(U ~U ;  

P1. While U
H

H
xF

n

x






,

,
)(

 
 calculate j: = j + 1; 

P2. Returns N: = j;Stop! 

For the numerical simulation of the random variable Zipf_Exp(, n, ), starting from 

the definition of variables V and W, we use the following algorithm. 

 

The Zipf_Exp_Direct algorithm 

P0. Input: (, n, ) - model parameters, N - volume of the sample; 

P1. For i: = 1; N execute 

m: = Zipf_invers(, n); 

For j: = 1; m 

Generate )1,0(U ~U  ; 

)ln(
1

: UL j


  

j
mj

ij
mj

i LWLV



11
max:,min:  

P2. Calculate: the sample mean and variance of V and W: M[V], Var[V], M [W], 

Var[W]; 

       Returns M[V], Var[V], M[W], Var[W]; 

        Stop! 

Table 6 shows the average and the theoretical dispersion for parameter values 

5.0,5,3   n for a 10,000 volume sample. 
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Table 6 The theoretical and empirical mean and variance for  =3,   =5 ,   =0.5   

Variable 
Mean Variance 

Theoretical Empirical Theoretical Empirical 

V 1.82236 1.80352 3.67365 3.60838 

W 2.20336 2.28037 4.44255 4.59143 

 

The numerical results of applying the two above algorithms are listed in Table 6. 

 

5. CONCLUSIONS 
 

In this paper we obtained three probability distributions with possible applications in 

the reliability of multi-component systems using the computation method (consisting of 

discrete distributions with continuous distributions). For these distributions we simulated 

10,000 variables by the inverse method and using their definition for different parameter 

values and we compared the methods by considering the theoretical mean and the 

variance with the sampling mean and variance respectively. It can be concluded that the 

methods lead to good results as can be seen from the Tables 1-6.  
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Abstract: The paper summarizes the first several known discrete probability distributions 

which may describe the occurrence of a random number of events in various experiments, e.g in a 
reliability system, the occurrence of a random number of failures. Among these discrete 

distributions, the first mentioned are usual distributions such as: Poisson(X),\ > 0;Geometric(q),0 

< q< l; Pascal(k,p),k £ N+, 0 < p < 1; Binomial(n,k,p),n,k £ N+,0 < p < 1. Then, some new 

discrete distributions are defined in terms of positive convergent series {an}, 1 < n < oo,an > 0. 
The paper presents methods of simulating the above mentioned distributions, which are either 

general, like the inverse method, or based on the rejection enveloping method. As enveloping 

distributions, either of the said distributions – i.e., Poisson and Geometric – or other less known 
distributions – such as the Zipf distribution or the Yule Distribution – are used. Comments related 

to testing these algorithms are finally presented. 

 
Keywords: discrete probability distributions, Zipf distribution,  Yule Distribution 

 

1. INTRODUCTION 

 

Any discrete distribution, in the form pn = P(N = n),n = 1,2,... can describe the 

occurence of a random number of events. In reliability, some usual distributions of this 

type are used, basically, the following distributions [2,3,5,9], truncated on [l,oo), (i.e. n > 

1). 

a. Geometric distribution Geo(p), O < p < 1, definesd as 

pn = P(N = n) = q
n
,n G N

+
,                 (1.1) 

b. Pascal distribution Pas(p,k), 0 < p < 1, k ∈ N+, defined as 

 
(1.2) 

c. Poisson(λ), λ > 0 distribution defined as 

 
(1.3) 

d. Binomial distribution Binomial(n,p), n ∈ N+
, 0 < p < 1 defined as 

 
(1.4) 

Methods for simulating these distributions are presented in various papers (see 

[1,5,9]). 

Note that any convergent series of positive terms an, n ≥ 1, could define a discrete 

distribution.  

 

mailto:vaduva@fmi.unibuc.ro
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If 

 

(1.5) 

then the probabilities of the discrete distributions derived from such series are 

 
(1.5’) 

Some other known discrete distributions, applied in different circumstances are the 

following. 

e. The distribution of Euler [5] defined as 

 
(1.6) 

  
where 

 

(1.6’) 

where γ is the Euler’s constant (0 < γ < 1) [8]. 

f.  The distribution of Kemp defined as [4] 

 
(1.7) 

  
This distribution is also called logarithmic series distribution of the parameter p, 0 < p 

< 1 and pn is in equivalent form 

 
(1.7’) 

  
g. The Zipf distribution [1,5,6] of the parameter a, a > 1 defined as 

 
(1.8) 

  
where 

 

(1.8’) 

is the  Riemann’s function. This distribution describes the occupied memory cells in 

the computer when the memory is dynamically allocated. 

h. The Yule(a) distribution of the parameter a, a > 1, defined as [1,5,6] 

 

(1.9) 

where B(n,a) is Beta function defined as  

 

(1.9’) 

which is connected with function Γ(p) by the formula 

 
(1.9’’) 
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The function Γ(p) is defined as 

 
(1.9’’’) 

Note that for p ∈ N+, the function Γ(p) is 

 (1.9iv) 
The simulation of these distributions is presented in several books and papers (see 

[1,4,5,7]) and they will be briefly described as such in a following section of this paper.  

In [8] several positive convergent series  are found which could define 

such discrete distributions, as 

 

 

The following is a list of positive convergent series collected from [8]: 

 

(1.10) 

 

(1.11) 

 

(1.12) 

 

(1.13) 

 

(1.14) 

 

(1.15) 

 

(1.16) 

 

(1.17) 

 

(1.18) 

 
(1.19) 

One aim of this paper is to present methods for simulating the distributions defined by 

(1.10)…(1.19). 
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2. THE INVERSE METHOD 

 

Any probability distribution can be simulated by a general method, the inverse method 

[1,5,6,7,9]. If  is the cumulative distribution function (cdf) of a random 

variable X, then a sampling value of X is simulated by the formula , where U 

is a random number, uniformly distributed over (0,1). (See [1,6,7,9,10]). This induces the 

following algorithm: 

 Algorithm INV 

 begin 

 generate U an uniform random number over (0,1); 

 take , (where F
-1

 is the inverse of function F(x)=P(X < x)); 

 end. 

The method can be used if there is an easy way to calculate the inverse function F
-

1
(U). In the discrete case, where the function F is a “step” function, the jumps of the 

function are in the points 1,2,…. Thus, the distinct values of F(x) are F(i) defined as 

 

(2.1) 

To simulate a random sampling value i, we must calculate F
-1

(U) using F in the 

formula (2.1) as a step function. In other words, we must search the index i, such as 

. There are various possibilities to search i. One could be binary 

search. Here we use a simpler (but not faster!) procedure, based on dividing the interval 

(0,1) in five intervals, namely  

.  

The algorithm uses a table of distinct values of , such as  

(i.e.  is large enough). The values  are calculated as follows: 

 

(2.1’) 

(The means by which k can be determined is explained later; it is the I0 index below). 

Let us select the indexes I1, I2, I3, I0 as follows: 

 
(2.2) 

The detailed algorithm INV is the following 

 Preparatory step; Calculate F(1),…F(I0), determine I1, I2, I3, I0. 

1. generate U Uniform on (0,1). 

2. if U ≤ 0.25 then begin 

i = I1; while U ≤ F(i) do i := i – 1 end else if U ≤ 0.5 then 

begin i = I2; while U ≤ F(i) do i := i – 1 end 

else if U ≤ 0.75 then begin i = I3; while U ≤ F(i) do i := i – 1 end  

else if U ≤ F(I0) then begin i := I0; while U ≤ F(i) do i := i – 1 end 

else begin i := I0; while U > F(i) do begin i := i + 1; F(i) := F(i) + pi 

end; end; 

deliver i. 
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(i.e. “i” is the generated sampling value). As  are calculated only once 

and if I0 is small, then the algorithm is fast for generating a sampling value i. But 

sometimes I0 may not be small at all, and then the algorithm will be slow. 

The detailed algorithm, described in steps 1. and 2. can be adapted and applied to each 

of the distributions (1.10-1.19). 

 

3. THE ACCEPTANCE-REJECTION METHOD 

 

There are various versions of this method (see [1,4,5,6,7,9,10]). Here, we will be 

using the rejection method based on enveloping the frequency function  of the 

distribution with another frequency function  , which can be simulated. Let us 

assume that there is a constant α > 1 such as  

The formal Theorem is the following: if X is a random variable with frequency 

function pn (to be simulated) and if Y is another random variable (which can be 

simulated) whose frequency function is hn, and if there is a constant  such 

as   

   
and if U is an uniform (0,1) random number independent of Y, then if  

     
the simulated value of X is X = Y. 

The general simulation algorithm is: 

 Algorithm REJ 

 repeat 

 simulate a random variate U uniform (0,1); 

 simulate j a random variate with the frequency function h(n); 

 until  

 deliver i = j; 

The value i is the simulated sampling value of f(n).  

The acceptance probability of the algorithm is  and if it is large, then the 

algorithm is fast. The function h is the enveloping function. To build up the algorithm 

REJ, it is important to find a good enveloping function h such a way as the acceptance 

probability which is large. 

Discussions on simulating by rejection procedure REJ any of distributions (1.10)-

(1.19) will be based on the following idea: the distribution h(n) could be a distribution 

which is decreasing with n, such as can happen in cases of convergent series with positive 

terms. 

This suggests that sometimes (but not always), a candidate for h(n) could be the 

geometric distribution Geom(p), , for which 

 (3.1) 

truncated to n ≥ 1.Therefore, in this case, the distribution h(n) has probabilities 

 
(3.2) 

An enveloping candidate could be also Poisson or any other selected distribution. 
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First we have to specify how to simulate the truncated distribution Geom(p), n ≥ 1. 

In [1,5,9] two procedures to simulate this distribution are presented. Note that this 

distribution is related to Bernoulli triles.  

A Bernoulli trile is an experiment on an event with constant probability p which, 

when it occurs, we say that is a success and when it does not occur, we say that is a 

failure. The number of failures N until a success occurs is a random variable having 

distribution Geom(p). Therefore, this can be simulated as: 

 Algorithm COUNT FAILURES 

1. Read p,  

2. Repeat 

Generate U uniform (0, 1); if U ≥ p then  

 until U < p. 

 The value j is the simulated value of Geom(p). 

We can also use the inverse method to simulate Geom(p). The cdf in this case is 

 

(3.3) 

The inverse method gives 

 
(3.3’) 

where [t] means the integer closest to real number t. 

Since the values of j must be positive, we have to reject the value of j = 0, i.e. the 

algorithm is: 

 repeat 

 generate j from Geom(p) 

 until j > 0. 

The value j is the simulated value of the truncated Geom(p). 

In order to build up the algorithm REJ for all discrete distributions in the form (1.10)-

(1.19), it is enough, in each case, to specify the possible envelope distribution and then to 

determine the constant α in the algorithm REJ. For instance, to determine q of the 

enveloping Geom(p), we find first the maximum value of an  and if this is β = am , then 

select q in the form q = β, β  will be a normalizing number. 

3.1 Simulation of the distribution defined by (1.10). 

Method 1. Here is where we try to determine the geometric distribution as envelope. 

The maximum of an is determined as the maximum of the function 

.  

i.e. the maximum of 

 
After some calculations, it results that the maximum point of this function is 

 
and hence 
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     and this gives 

 
(3.4) 

To determine α, consider the ratio  

 
which, in a similar manner has the same maximum point x0  , and after some calculation 

we finally obtain 

 
(3.4’) 

Now, the construction of the algorithm REJ is terminated. 

Method 2. An alternative method of simulating this distribution is to use the inverse 

method of the equivalent distribution directly: 

 
The cdf is therefore 

 
where the derivative ()’  is calculated with respect to n. To apply the inverse method, we 

have to solve in n (numerically!) the equation 

 
(3.4’’) 

where U is an uniform random number over (0,1). If n0  is the solution of (3.4’’) then the 

simulated value is n = int(n0). 

Method  3. Let us use as enveloping distribution the Kemp distribution i.e. 

 
Then the ratio   becomes 

 
If  b>4, it is shown by induction that 

 
Therefore, when p is selected such as ap > 4 then α > 1 and the algorithm REJ is 

obvious. With respect to , it seems that method 3 is preferable. 

3.2 Simulation of the distribution defined by (1.11) 
Method 1. Note that the sequence is 

 
Let us choose this time as enveloping distribution a Zipf(2) distribution [1,5] defined as 

 

(3.5) 

Consider the ratio 
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After some simple calculations we have 

 

(3.5’) 

and the construction of the algorithm REJ is finished. Simulation of the Zipf distribution 

is found in [1,5] and is presented in the last section. There is a version of this distribution 

[1] which is defined for n = 1,2,…  < ∞ (i.e. a finite series!), referring to a finite 

population of size . Comments on this, will me made in the last section of the paper. 

Method 2. Let us take as enveloping distribution that given by (1.10). Therefore we 

have 

 
then the ratio is 

 
Note that ratio 

 
proved by induction. Therefore 

 
Which if  gives α > 1, and the algorithm REJ is obvious. To decide which 

of these method is preferable, it is necessary to numerically compare the  of the two 

methods. 

3.3 Simulation of the distribution defined by (1.12) 

Method 1. For the sequence  , we have 

 
we select the enveloping distribution h(n) as a Poisson(1) i.e. 

 

(3.6) 

The ratio 

 
(3.6’) 

Since elements f(n), h(n), α are specified, the algorithm REJ is obvious. 

Method 2. If we select as enveloping distribution that given by (1.11), then we have 

 
and 
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therefore, the algorithm REJ is defined. 

Method 3. Since , we can take as envelope the Geo(p), p =  and 

 
and again, the required algorithm is ready. Note that method 1 is the best of the three 

methods, since in that case α is close to one. 

3.4 Simulation of the distribution defined by (1.13) 

Method 1. The sequence 

 
If we select as enveloping distribution the Poisson(1) distribution in the form 

 
(3.7) 

we obtain 

 
(3.7’) 

The algorithm REJ is obvious in this case. 

Method 2. Let us take as envelope the distribution (1.12). In this case, we have 

 
(3.3’’) 

and algorithm REJ is obvious. This method is better than method 1, since  is larger. 

3.5 Simulation of the distribution derived from (1.4) 

Method 1. In this case 

 
We select as an enveloping distribution the Poisson(1), i.e. 

 
(3.8) 

The ratio  is 

 
(3.8’) 

and elements of the algorithm REJ are determined. 

Method 2. Let us choose as enveloping distribution the Kemp distribution. Then the 

ratio becomes 

 
(3.8’’) 

If we choose p such as , then α > 1 and algorithm REJ is defined. With 

respect to , method 1 is preferable.  

3.6 Simulation of the distribution derived from (1.15) 

In this case, note that 

 
We choose as enveloping distribution the Yule(k) distribution in the form 
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(3.9) 

 

The ratio  is 

 
Therefore 

 
 (3.9’) 

All elements of the algorithm REJ are defined. The probability  can be calculated 

numerically. 

3.7 Simulation of the distribution derived from (1.16) 

Method 1 (known). This is the Zipf(a) Distribution, defined in its general form as 

 

(3.10) 

where the ζ(a) is the ζ  Riemann function. The formula (3.10) shows that ζ(2) ≤ 2, (See 

[1,8]). An algorithm for simulation of the random variable X as Zipf(a) is presented in 

[1,4]. It uses as enveloping distribution the distribution of a random variable Y such as 

 
For which the cdf is 

 
And the inverse method gives 

 
(3.10’) 

(where int denotes “integer part”). Note that ratio 

 
(3.10’’) 

Therefore, the algorithm is 

 Step1: Take b = 2
a-1

; 

Step2: repeat 

 Generate U,V uniforms on (0,1), independent; 

 Take Y = int , T= ; 

  Until VY  

 Deliver X = Y. 

      X is the simulated value. The probability can be easy approximated. 

      Method 2. Let us take as enveloping distribution, the distribution derived from (1.10) 

with the same a. Then we have 

                                                             (3.10’’’) 

and the algorithm REJ is terminated. To decide which of these methods is preferable, it is 

necessary to compare the  probabilities. The second method appears to be the best. 
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3.8 Simulation of the distribution derived from (1.17) 

Method 1. The distribution is 

 
We take as enveloping distribution the Zipf(2) distribution defined as 

                                                                                         (3.11) 

where Ϛ(2) is the Riemann function of the argument 2. Therefore 

 
It is shown by induction that 

 
Therefore 

                                                                                                    (3.11’) 

The algorithm REJ is specified 

Method 2. Let us take as enveloping distribution the Kemp distribution. Then, the 

ratio becomes 

                                                                     (3.11’’) 

As parameter  is free, we can choose it as follows: 

                                                                  (3.11’’’) 

Thus, algorithm REJ is terminated. To select the best method, the probabilities 

must be estimated numerically. 

3.9 Simulation of the distribution derived from (1.18) 

Method 1. The distribution is 

 
In this case we take again as enveloping distribution the Zipf(2) distribution, i.e. 

                                                                                                                   (3.12) 

The ratio in this case is . 

Here, again by induction, it is shown that  

 

and finally                                                                                    (3.12’) 

The algorithm REJ is obvious. 

Method 2. Let us choose as enveloping distribution the Kemp distribution  

i.e.                                                                                                (3.12’’) 

The ratio  is 

                                                (3.12’’’) 

If we choose  as  

 which can be done, then , algorithm REJ is ready. 
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3.10 Simulation of the distribution derived from (1.19) 

Method 1. In this case we have  

                                                                            (3.13) 

Let us take as enveloping distribution (1.10) 

                                                                                                             (3.13’)  

Now the ratio  is . 

Since the function  for  we have 

. 

If we now choose as 

 ,                                                                                           (3.13’’) 

then the ratio becomes , and the algorithm REJ is ready. 

Method 2. Let us take as enveloping distribution the distribution of Kemp of the 

paramtere β,  then we have 

. 

Note that , and then 

. 

Finally, one obtain  .                         (3.13’’’) 

i.e. the algorithm REJ is specified. Here again the probabilities will show which 

method is preferable. 

 

4. ADDENDA: SIMULATION OF USED DISTRIBUTIONS 

 

The simulation of discrete distributions mentioned in the formulas (1.6)-(1.9) will be 

presented in the following. 

4.1 Simulation of logarithmic series of the parameter p 

This distribution is .                                 (4.1) 

Method 1. One method for simulating this distribution consists in the fact that the 

random variable X having this distribution is a mixture (see [5]) of the random variable Y 

with the cdf 

.                                                                                          (4.2) 

with the Geometric(y) distribution. Therefore, the algorithm is Generate a random 

variate y by the inverse method, i.e solve the equation 

;                                                                                                                 (4.2’) 

Generate X as Geometric(y). 

Deliver X. 

In [5], the inverse method for simulating X is presented, (i.e. the solution of (4.2’)). 

 

Method 2. Let us take as enveloping distribution the one deriving from (1.10).  
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Then,

 

In this case , 

which gives  and the algorithm REJ is defined. It seems difficult 

to compare these methods, if not by means of computer tests. 

4.2 Simulation of  distribution 

 Method 1. In this case 

,                                                                              (4.3) 

where Ϛ( ) is the Riemann function. In [1,5] a rejection method which uses the 

enveloping distribution is presented: 

.                                                   (4.4) 

By calculating the ratio , it results that . (4.5) 

In [1] it is shown that 

.                                                          (4.5’) 

There are some remarks to be made regarding this distribution. 

(1). If , it is used to represent random events, such as number of 

occupied cells of a computer memory of size  , when memory is dynamically 

allocated;. 

(2). For a finite  this distribution describe the random occurrence of words in a text 

of a given length (natural language). 

Method 2, (New method). Let us select as enveloping function the  as the  

distribution. Then 

, 

and hence 

.                                                               (4.5’’) 

We can choose the parameter  such as  and the algorithm REJ is obvious. A 

more relevant comparison between these methods could be done by means of computer 

tests. 

4.3 Simulation of Euler distribution 

Method 1.(Known). This distribution is 

,                                          (4.6) 

where γ is the constant of Euler. In this case, we are using a rejection method based on 

enveloping , with the distribution of Logarithmic series of parameter p, 0¡p¡1. The 

ratio is 

 

         .                                                         (4.6’) 
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If we choose  such as  

 
then . The elements of the algorithm REJ are defined. 

Method 2.(New) Let us take as enveloping distribution the Geometric(q), where 

. 

Since  , we have 

 
and REJ is defined. Here again, the comparison of methods could be done via computer 

tests. 

4.4 Simulation of  distribution 

The simulation is based on the following judgment: The Yule(a) distribution is the 

mixture of the Geometric(p) distribution with 

 
and Exp(1) distribution of Y. This results in the following algorithm: 

1. Generate E and Exp(1) random variate. (i.e. Generate U uniform (0,1) and take 

E=-log(u)), U>0. 

2. Generate , independent from E; 

3. Calculate 

. 

The  X variable is the required Yule(a) variable. 

In [1], it is specified that the Yule distribution is a better approximation of word 

frequencies (in a natural language) than the Zipf distribution.  

Comments. Computer tests were not performed yet. They could be performed 

following the hints in [10]. This could make a good exercise for an M.Sc. student. Such 

an exercise could be could be useful for comparing various methods of simulation for 

each distribution. The inverse algorithms must be first considered to assess the 

performance degree of these methods. 
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Abstract: Several general mathematical properties of the Rayleigh′s family of distributions 

are examined in a consistent manner by using the power series distributions (PSD) class [1]. A 

new cumulative distribution function and probability density are obtained for the continuous type 
random variables which represent the maximum or the minimum in a sequence of independent, 

identically Rayleigh distributed random variables, in a random number by means of a power 

series distribution. An asymptotic result characterized by the Poisson Limit Theorem is 

formulated and analysed. 
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1. INTRODUCTION 

 

In the paper [2] sets out to introduce and analyse the properties of the maximum and 

minimum distributions for a sample of power series distribution. This can serve as a 

mathematical model to describe the probabilistic behaviour of the signals used on a large 

scale in the field of radiolocation. In this paper, the distribution is presented as being the 

distribution of the maximum or minimum value from a sample of random volume Z from 

a Rayleigh distributed statistical population, where Z is a random value from the power 

series distribution class. 

 

2. MIN RAYLEIGH AND MAX RAYLEIGH POWER SERIES DISTRIBUTIONS 

 

It is know that a random variable admits a Rayleigh distribution with the parameter  , and 

we note ( ), 0X Rayleigh   : , if the cumulative distribution function (cdf) is 
2

22( ) 1 , 0

x

RayF x e x


   , while the corresponding probability density function (pdf) 
2

22
2

( ) , 0

x

Ray

x
f x e x





  . 

We consider the random variables  1 2max , ,...,Ray ZU X X X  and 

 1 2min , ,...,Ray ZV X X X , where  
1iiX


 are independent and identically distributed random 

variables, ( ), 0iX Rayleigh   :  and Z PSD , that is ,...,,,
)(

)( 21z
A

a
zZP

z
z 



 where 

1 2, ,...a a  is a sequence of real, non-negative numbers. 0   the radius of convergence of the 

power series
1

( ) z

z

z

A a


   , (0, )  and  the real parameter of the distribution. 
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We point out that the random variables  
1iiX


 are independent of the random variable 

Z , the latter’s distribution being part of the power series distributions class [1]. 

In accordance with the working methods in the paper [2,4], it can be stated that the 

random variables RayU  follow the Max Rayleigh power series distributions of parameters   

and   (we note: ( , )RayU MaxRayleighPS  : ) and RayV  follow the Min Rayleigh power 

series distributions of parameters   and   (we note: ( , )RayV MinRayleighPS  : )  if the 

cumulative distribution functions (cdf) are characterized by the relation: 

 

2

221
( )

( ) , 0
( ) ( )

x

Ray

Ray

A e
A F x

U x x
A A


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   
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 
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The probability densities functions (pdf) are characterized by the relation: 
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Proposition 2.1. If  
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Proposition 2.2. If  
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Corollary 2.1. The r
th

 moments, r N , 1r   of the random variables 

( , )RayU MaxRayleighPS  :  and ( , )RayV MinRayleighPS  :  are given by: 
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where the  pdfs of the random variables  1 2max , ,..., zX X X  and  1 2min , ,..., zX X X  
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3. SPECIAL CASES 

 

3.1. The Max Rayleigh Binomial and Min Rayleigh Binomial distributions. The 

Max Rayleigh Binomial (MaxRayB) and Min Rayleigh Poisson (MinRayP) distributions 

are defined by the distribution functions presented in a general framework in [2], where 
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respectively.  

3.2. The Max Rayleigh Poisson and Min Rayleigh Poisson distributions. The Max 

Rayleigh Poisson (MaxRayP) and Min Rayleigh Poisson (MinRayP) distributions are 

characterized by the cumulative distributions functions defined by the relations (1) and 

(2), where 
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and                                                                    

 

2

221

*

*

1 ( ) 1
( ) 1  = , 0.

( ) 1

x

e

Ray

RayP

A F x e
V x x

A e






 
 

  
 
 



      
 

                                                         (8) 

3.3. On the Poisson limit theorem. The following theorems show that the MaxRayP 

and MinRayP distributions approximate the MaxRayB and MinRayB distributions 

depending on certain conditions. 

Theorem 3.1. (Poisson limit theorem). The MaxRayP and MinRayP distributions 

can be obtained as the limit of the MaxRayB, respectively MinRayB distributions with 

distribution functions given by (5) and (6) if n    when nand 0 . 

In other words, 
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Fig. 1 and 2 show the behaviour of the pdfs of ( , , )MinRayleighB n p , 

( , )MinRayleighPoi   , ( , , )MaxRayleighB n p  and ( , )MaxRayleighPoi    for some 

values of the parameters:  40n  , 
1

10
p  , 4  , 5  . 

Fig. 3 and 4 show the behaviour of the pdfs of ( , , )MinRayleighB n p , 

( , )MinRayleighPoi   , ( , , )MaxRayleighB n p  and ( , )MaxRayleighPoi    for some 

values of the parameters. 
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Fig. 1: Pdfs for the Max-Rayleigh-Binomial and Max-Rayleigh-Poisson distributions – graphical 

illustration of the Poisson Limit Theorem 
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Fig. 2: Pdfs for the Max-Rayleigh-Binomial and Max-Rayleigh-Poisson distributions – graphical 

illustration of the Poisson Limit Theorem 
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Fig. 3: Pdfs for the Min-Rayleigh-Binomial and Min-Rayleigh-Poisson distributions – graphical illustration 

of the Poisson Limit Theorem 
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Fig. 4: Pdfs for the Min-Rayleigh-Binomial and Min-Rayleigh-Poisson distributions – graphical illustration 

of the Poisson Limit Theorem 

 

CONCLUSIONS 

 

The results formulated and examined in this paper are in connection with the study of 

the random variable distribution, which can be expressed as being the maximum or 

minimum of a sequence of independent random variables identically distributed in a 

random number. In practice, this translates as the emission and reception of some signals 

is a random number, signals whose amplitude is a random variable characterized by the 

Rayleigh distribution [3]. The signals that best record either a maximum or minimum 

amplitude are of special interest to us.   

It has, thus, been presented in a consistent manner how to determine the maximum 

and minimum distribution of independent and identically distributed random variables, 

which form a random sequence. 

The Poisson Limit Theorem has been formulated when the random variable number in 

a sequence has a zero truncated binomial distribution and the limit distribution of the 

minimum and maximum is of Poisson type. 
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1. INTRODUCTION 

 

The transport problem appeared when the need to solve a group of economic problems 

arose. These problems consist in finding the smallest transportation costs for the products 

as they travel towards their destination. A classical variant of the transportation problem 

is a linear programming problem, and a solution was proposed in 1947 by Dj. Dantzing 

[10] that solves it through the simplex method. It consists in determining the optimum 

transport plan for the required amount of a single product from a source to the destination, 

that minimizes the transportation cost. This model of the problem is used to optimize the 

supply of businesses with raw materials, the supply of stores with products from  

wholesalers and the design of telecommunication, water, gas or petrol networks. Several 

authors, D. R. Fulkerson [19], R. G. Busacker și P. J. Goven [3], J. Edmonds and R. M. 

Karp [14], N. Tomizawa [40], M. Klein [27], D. D. Sleator and R. E. Tarjan [37], A. V. 

Goldberg and R. E. Tarjan [20, 21], P. T. Sokkalingam, R. K. Ahuja and J. B. Orlin [38], 

I-L.Wang, S-J. Lin [41], L. Ciupală [8], J. M. Davis and D. P. Williamson [11], P. Kovacs 

[28], A. Sifaleras [36], S. Ding [13], M. Dawuni and K. F. Darkwah [12], N. A. El-

Sherbeny [15], M. B. Cohen, A. Madry, P. Sankowski, and A. Vladu [9], A. M. P. 

Chandrasiri and D. M. Samarathunge [4], R. A. Maher and F. A. Abdula [3], J. Erickson, 

K. Fox and L. Lkamsuren [16], S. Abdi, F. Baroughi and B. Alizadeh [1] have proposed 

solutions to the network transportation problem with linear cost functions, and also with 

uncertain cost and/or capacities for each edge in the network. They have also presented a 

theoretical and practical analysis of the algorithms, fitted with conclusions and 

recommendations. 

When the network has non-linear cost functions, the problem becomes more 

complicated. In this case, there are several concepts that are widely used to solve it: the 

optimality conditions Kuhn-Tucker and the Lagrange multipliers, the first order 

derivatives (gradients), the second order derivatives (Hessian matrix), and also the 

penalty functions [39], [30].  
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The usage of these techniques is much more difficult in networks with concave cost 

functions, because there are multiple local minima and it can lead to only getting a single 

local optima. This type of problems have been studied in detail by R. Horst and P. M. 

Pardalos [24], R. Horst and H. Tuy [25], Q. He, A. Shabbir and G. L. Nemhauser [22]. 

We are especially interested in problems that describe real life situations which are 

typical for a modern economy. As this kind of models are extremely complex, our 

preoccupation resulted in genetic algorithms proposed to solve them. They have been 

described for the first time under the leadership of J. Holland [23] at the University of 

Michigan. The name “genetic” derives from the notions surrounding them, e.g. 

population, chromosomes, genes, selection, mutation, crossover. These are stochastic and 

heuristic algorithms, which mean that the obtained solutions is are not always optimal, 

but they come close to the optima. In general, these algorithms are polynomial and are 

used to solve complex problems. A comparative analysis of the genetic algorithms 

applied to optimization problems can be found in [33] and an overview of the algorithms 

is given in [29]. 

These algorithms are recommended because: one doesn’t have to know gradients and 

Hessian matrices;  they can’t get stuck on local optima and still work very well on big 

problems with a many variables. Several authors have used genetic algorithms to solve 

transport network problems: D.B.M.M. Fontes and J.F. Gonçalves [18], A. Sadegheih and 

P. R. Drake [35]. The implementation of the algorithm is often slowed down by the need 

to use auxiliary variables and the computation of the fitness function many times. 

Genetic algorithms have been proposed to solve micro circulation problems. Some of 

them are: the usage of adjacent roads to reduce the traffic from main roads [6], the 

minimization of the time spent before a plane can land [26] and the coordination of 

several urban bus routes [42]. 

  The genetic algorithm described in [5] can plan efficiently the high-speed train 

stations. In [44] is present an algorithm that minimizes costs and streamlines the metro 

activity and [7] describes an algorithm that improves significantly the security and 

efficiency of corridors with multiple-rail grade crossings. Another genetic algorithm 

proposed in [2] optimizes the routes of the airport buses by minimizing the transfer time 

of the passengers. The problem of planning the deposit spaces in ports is studied in [43] 

with the purpose of minimizing taxes.  

 

2. PROBLEM FORMULATION 

 

We consider the transport network problem described by the convex graph 

, , . The real production and consumption function  

is defined on the finite set of vertices . The concave non-decreasing functions of cost 

 are defined on the edges . To solve this non-linear optimization problem we 

must find a flow  that minimizes the function , thus satisfying the 

conditions:  
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 is the set of possible solutions, that satisfies the system of equations and the 

positivity restrictions, ,  . 

We will consider the problem in which any quantity can be transported through an 

edge, the costs being described by a concave function. We also consider that in no 

intermediary point can the quantity of goods increase or decrease, thus the flow 

conservation condition being satisfied. Which means that no intermediary points consume 

or produce flow. Then, the problem requires the minimization of transportation costs from 

the source to intermediary centers and then to the destination. 

In such situations, in which we have to check all admissible solutions, which can only 

be computed in a long time, the genetic algorithm is a solution that can provide the 

answer in a reasonable amount of time. Genetic algorithms are based on the theorem of 

templates [34]. A template  is defined as a pattern that describes a subset of 

chromosomes with similar genetic sections. Schemes have two properties: 

 the degree of a template , denoted by  – the number of fixed positions in a 

template; 

 the definition length of a template , denoted by  – the distance between the 

first and last position of the string of genes.  

The first step in using a genetic algorithm is deciding how to encode the problem, 

how to describe the chromosomes as admissible solutions. The most often used is binary 

encoding, but it can also be numerical, symbolic and character-based depending on the 

problem. A population consists of chromosomes, which is actually a set of admissible 

solutions.  

When creating a population, we must keep in mind that:  

 the chromosomes will have a constant length; 

 the number of chromosomes in a population is constant; 

 every population  is created from only the offspring of the population 

 or parents and offspring.  

We will consider the elements of a population of size  (or ) represented by 

numerical strings of length  constructed on the numerical alphabet 

. The population will evolve to better solutions using selection, 

mutation and crossover. The value of the fitness function will have smaller and smaller 

values which means that the chromosomes will be closer to the minimum solution. The 

elitist selection is preferred in a genetic algorithm, because it guarantees that promising 

chromosomes will not be lost.  

There are several ways in which we can make sure that we keep the best solution in a 

population. When applying selection at a step k, we will decide which chromosomes will 

participate in creating a new population. There are several methods of selection: 

- the probability of choosing a particular chromosome depends on the value of  its 

fitness function; 

- chromosomes are sorted in ascending order based on their fitness function and the 

probability depends on their position in the sorted list; 

- for each 2 randomly chosen chromosomes, we take the one with a smaller fitness 

function. 

For our problem, we will sort the chromosomes in increasing order and take the first 

half, thus we will never lose a good solution, even if it appears in the first population. 

These chromosomes will form the first half of the next population and will be parents to 

the offspring. Even if we aren’t guaranteed to get better solutions this way, the chance is 

better than when choosing random parents and the offspring will be at least as good as the 

parents. 
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The other half of the population will be obtained through the crossover of the 

previously selected chromosomes. A pair of offspring will be created by taking two 

adjacent chromosomes and making a random cut. The first offspring will be formed from 

the left part of the mother chromosome and the right part of the father chromosome; the 

second one will be formed from the left part of the father chromosome and the right part 

of the father chromosome.  

So if we have: 

mother  

father  

then the offspring will be: 

offspring1:  

offspring2:  

We can also use more cuts or create offspring from several chromosomes. 

The random modification of a the gene of a chromosome, also called mutation, has a 

mixed effect, it can improve or worsen the solution. The mutation will take place at a 

small rate of , e.g. , so that we may avoid losing not lose good solutions, but 

enough to produce new solutions in order to elude a local minima. Mutation will generate 

a random value to a randomly chosen gene. 

We must also define the stop condition. Usually, we run the algorithm until  

populations are created and return the best solution in it. But in this case we may get to a 

point where subsequent populations are the same. To avoid such a situation, we can stop  

breeding new populations when the condition  is satisfied for the 

best solutions in two consecutive populations  and . 

Based on what we described, a genetic algorithm completes several steps and at the 

end an optimum solution, it results in [32], [17]: 

Step 1. Generation of the initial population;  

Step 2. Evaluation of the fitness function for each chromosome of the population;  

Step 3. Selection of the chromosomes so that we don’t lose any good solutions;  

Step 4. Crossover of the selected chromosomes to create offspring with a fitness 

function at least as good as that of the parents; 

Step 5. Mutation of a gene of a chromosome at a rate of ; 

Step 6. Test of the stop condition; if it is satisfied, then we STOP; if not, we go back 

to Step 2. 

 

3. DESCRIPTION OF THE ALGORITHM 

 
The genetic algorithm starts with a random population of chromosomes, each individual 

chromosome being an admissible solution to the transport network problem. Every chromosome 

will have length . Using selection, crossover and mutation we will improve the population and 
obtain a smaller value of the fitness function.  

The algorithm generates in each population chromosomes at least as good as in the previous 
population, because at every step we select only the chromosomes with the lowest objective 

function value and the rest of the population is filled with their offspring. 

The genetic algorithm P1 proposed to solve the transport problem with non-linear concave 

functions consists of the following steps: 

1. Initialization. The initial population is generated in the following way: a string of  

random natural numbers will be generated, such that the first position will have a number  

between 1 and  (from the first vertex called source there is at least one outgoing edge and at 

most  edges), on every position  a number  between 0 and  will be 

generated, and the last position will have the number  (there are no outgoing edges from 

the last vertex, the destination). This string will be one of the chromosomes in the population.  



Review of the Air Force Academy                                                                  No.2 (37)/2018 
 

41 

The population will have  chromosomes. We will also randomly generate a matrix 

 that shows how much of the flow from vertex  will go through 

edge . For this matrix  only if the edge  doesn’t exist and . 

2. Evaluation of the chromosomes from the current population means evaluating the 
objective function of each individual. 

3. Selection of the parent chromosomes that will participate in the crossover is done so that 

their objective functions are the smallest possible. The chromosomes will be sorted in the 
ascending order of the objective function value. The first half of the new population will be 

formed from these chromosomes. 

4. Crossover of the chromosomes is realized between the previously selected chromosomes 
to form the second half of the population. We will cut randomly each parent in the same place, 

and combine these parts as described earlier to create two new offspring. This way, each pair will 
have two offspring and the size of the population will be constant. 

5. Mutation of a single gene of a chromosome will be done at a rate of , 
by generating a new random value for a gene of in a chromosome. 

6. Testing the stop condition can be done in a few ways: 

a) after creating  populations; 

b) a time restriction for very serious problems; 

c) stopping the algorithm when the condition  is satisfied, for the 

best solutions in two consecutive populations  and . 

In Step 2 we evaluate the chromosomes of a population. As we said earlier, each chromosome 

is a string of numbers in which position  represent the number  of outgoing edges in the 

subgraph that contain only edges through which the flow passes. To evaluate a chromosome, we 

must first obtain the solution encoded in it, and then evaluate the objective function.  

To decode the solution from a chromosome we will do the following: 

I. Let  be the number of outgoing edges from a vertex  in the graph  that describes the 

transport network. Then we have the following two cases: 

- , the graph that describes the admissible solution contains all outgoing edges from 

the vertex  of graph ; 

- , the graph that describes the admissible solution has only a subset of size  of 

outgoing  edges from vertex  of graph . These edges will be selected randomly. 

II. We know that we need to transport a quantity of flow  through the network from the 

description of the problem. This flow will be assigned to the edges based on the matrix 

 generated in step 1, that shows how much of the flow from vertex  

will go through edge . The obtained value is the flow  assigned to the edge  whose 

value will be placed in position  of the admissible solution of the form .  

After constructing the admissible solution, we will compute the objective function. If the 

chromosome is deemed fit to go into the next population, this value will be stored so that in the 
next populations only the offspring will be evaluated. This allows us to decrease the execution 

time of the algorithm, which is very important, especially for big problems. 

Theorem1: The genetic algorithm P1 uses  memory. 

Proof: The transport network is described by an adjacency list of size , the 

matrix  is of size  and a population of chromosomes is of 

size , and every new population will be changed in place, so no other 

memory is necessary. As a result, the algorithm needs  memory.  

Theorem2: The genetic algorithm P1 is polynomial and has a  complexity. 

Proof: To create the adjacency list that describes the graph  operations are 

needed. To create a population of size  with every chromosome of length ,  

operations are needed. To evaluate all chromosomes in a population, we need 

 operations, which creates a  complexity.  
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The crossover has a  complexity, and the mutation  – . As a result, the 

complexity of the algorithm is .  

Remark1: For sparse graphs, the complexity is . 

Remark2: The genetic algorithm P1 is convergent and always converges to a good 

solution. If the algorithm is run several times (for example in parallel or sequential) and 

we choose the best solution, we can get one very close to the global optima. 

 

4. PRACTICAL APPLICATION 

 

The algorithm described above was implemented in the Wolfram Language and tested 

on several random examples of different sizes. The tests were done using two stop 

conditions:  

1. the algorithm was stopped when the condition  was satisfied, 

for the best solutions in two consecutive populations  and ;  

2. the algorithm was stopped after  populations were made.  

As we can see in the following table (Table 1.), the execution time increases much 

slower for condition 1 compared to condition 2.  

This happens because after a number of steps, even of a optima is found it will be sent 

to the next population because the condition 2 will not be satisfied. From this data we can 

recommend the first stop condition for the algorithm. 

 
Table 1. Execution time of GA (seconds) 

Nr. of 

vertices 
t tk Nr. of vertices t tk 

10 0,0262 0,0950 60 6,3544 46,7701 

15 0,0809 0,3066 65 4,9332 83,5933 

20 0,2421 0,7972 70 3,5041 102,1030 

25 0,3294 1,6901 75 7,4183 195,1190 

30 0,5540 3,700 80 18,0235 193,3200 

35 1,1752 7,1764 85 12,8842 323,9760 

40 0,9351 9,0325 90 10,5738 311,3430 

45 1,1236 18,3405 95 45,6272 511,6740 

50 3,5589 24,2091 100 55,9386 529,4140 

55 2,2681 46,7701 120 117,9100 1621,2100 

 

Using the standard Wolfram Language function  we 

can obtain the global minima for our problem.  

 
Table 2. Execution time for Minimiz (seconds) 

Nr. vertices Minimize 

4 0.17 

6 3.08 

8 345.61 

 

The execution time for the function Minimize given in Table 2. increases starting from 

graphs with 8 vertices,  i.e. the execution time on a graph with 8 vertices is 3 times longer 

than the genetic algorithm on a graph with 100 vertices. 

By conducting these tests we could experimentally prove that the algorithm converges 

by computing the total objective function of a population and observing that it is always 

decreasing. 
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CONCLUSIONS 

 

In this paper, we have discussed the transportation network problem with concave cost 

functions. To solve this problem, we proposed a genetic algorithm, which uses elements 

of graph theory, to transform a chromosome into an admissible solution.  

1. The experimental results prove the correctness of the described algorithm, because 

we always get a good solution, and we can even get the global optima if we run it several 

times. 

2. The algorithm is convergent, because the total fitness function of a population is 

always decreasing. 

3. The execution time is much better comparing to standard Wolfram Language 

functions, which means that the algorithm is fast even for bigger networks. 
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Abstract: The described representation of a fuzzy system enables an approximate functional 

characterization of the inferred output of the fuzzy system. With polynomial subsystem inferences, 
the approximating function is a sum of polynomial terms of orders depending on the numbers of 

input membership functions. The constant, linear, and nonlinear parts of the fuzzy inference can 

hence be identified. The present work also includes two applications which show that the 
procedure can very well approximate the differential equations. In the case of no analytical 

solution, the procedure is a good alternative. 
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1. INTRODUCTION 

 

The aim of the paper is to prove that fuzzy systems are also universal approximators 

to continuous functions on compact domain in the case of the described subsystem 

inference representation corresponding to the fuzzy systems, as in the work of Kosko 

[11], Wang [16] and later Alci [1], Kim [10]. The paper is organized as follows: the first 

section provides a brief review on product sum fuzzy inference and introduces the 

concepts of additive and multiplicative decomposable systems; the second section 

presents a subsystem inference representation; the next sections discuss the cases of 

polynomial, sinusoidal, orthonormal and other designs of subsystem inferences; the last 

section presents some conclusions on the matter. 
 

2. A FUZZY SYSTEM WITH TWO INPUT VARIABLES 

 

A fuzzy system of n input variables ,,,,, zyba   with input membership functions 

rrhhbjai mrZmhYmjBmiA ,1,,,1,,,,1,,,1,    is expressible as an additive sum 

of zyba mmmm    systems, each of which is multiplicative, and thus decomposable 

into n single variable subsystems. 

Consider a fuzzy system with two input variables a and b with rule consequents 

embedded in the ba mm  matrix 
ba mmU , from [7,8,15].  

The inferred output is [7,8,15]: 

 

     ,
1 1

,,,

l

Bb
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q

m

l

q

Aalqmmba ffU
a b
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where: 

 

 lq ,  are the elements of the matrix ,, ba mm defined in [7,8,15]; 

        aa

q

A

q

A

q

A

q

A mqmffff ,1,21    means a set of linear independent am  

by one column vectors, selected for variable a and is associated to a subsystem  qA ; 

  q

Aa f  represents the inferred output of subsystem  qA ; 

        bb

l

B

l

B

l

B

l

B mlmffff ,1,21    means a set of linear independent bm  by 

one column vectors, selected for variable b; 

  l

Bb f  represents the inferred output of subsystem  lB . 

 

The selection of the vectors q

Af  and l

Bf  should depend on the kind of approximation 

function one desires to use for the problem at hand, be it polynomial, sinusoidal, or other 

designs. 

 

3. POLYNOMIAL SUBSYSTEM INFERENCE 

 

The vectors 
a

q

A mqf ,1,  can be selected to emulate polynomial functions (they are 

termed polynomial subsystem vectors). The resulting subsystem inference  q

Aa f  

represents the polynomial subsystem inferences. In the case of a system with n fuzzy 

variables ,,,,, zyba  having zyba mmmm ,,,,   input membership functions, the inferred 

output is an approximation to the polynomial function, which contains polynomial terms 

up to orders of 1,,1,1  yba mmm   and 1zm  in yba ,,,   and z. Conversely, the 

polynomial function can be considered as an approximate output of the fuzzy system. The 

subsystem inference representation contributes to an approximate functional 

characterization of the inferred output in the sense that as yba mmm ,,,   and zm tend to 

large values, the polynomial inferences      h

Yy

j

Bb

i

Aa fff  ,,,   and  r

Zz f  converge 

uniformly to the polynomial terms 111 ,,,  hji yba   and .1rz   

 

4. SINUSOIDAL AND EXPONENTIAL SUBSYSTEM INFERENCES 

 

Same as before for polynomial inferences, in the example of sinusoidal subsystem 

inferences, the fuzzy inferred output constitutes a piecewise linear approximation of a 

sinusoidal/ cosinusoidal function. Using the sinusoidal inferences, the approximating 

function is comprised of sine/ cosine, and cross product terms. With appropriate designs 

[7,8,15], sinusoidal inferences can be further manipulated into an orthonormal set. 

In the example of exponential subsystem inferences, the inference of the fuzzy system 

constitutes [7,8,15] a piecewise linear approximation to an exponential term. 

 

5. APPLICATIONS 

 

In the case of the first application, we shall use the polynomial and exponential 

inferences together for the fuzzy approximation of the differential equation solution 
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We shall consider the fuzzy systems with two fuzzy variables: a is for approximating 

the polynomial term of x, and variables b is for realizing the exponential term xe . 

Trapezoidal input membership functions in Fig. 1 and Fig. 2 are assumed [7] for all 

variables.  

 
FIG. 1. Trapezoidal input membership functions for the fuzzy variable a 

 

Let the domains of interest for a and b be [-0.7; 0.3] and [0.2; 0.8].  

From the Fig. 1 we can notice that:  

 

 
 

 















0,4.0,

4.0

4.0
1

4.0,7.0,1

1 a
a

a

aA  (3) 

 

and 
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For the variables a and b, one sets: 
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The inferred output of subsystem  2A will be [7,8,15]: 

 

         ,21
21

222 afaff AAAAAa    (6) 

 

namely 
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4.0
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a

a
a

f Aa
 (7) 

 

 
FIG. 2. Trapezoidal input membership functions for the fuzzy variable b 

 

By observing Fig. 2, we can notice that:  

 

 
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and 

 

   
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
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The inferred output of subsystem  2B is [7]: 
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As 
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a fuzzy system to achieve (2) is [7]: 
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where: 

  

 
 








20

20

y

y
 

 

and 2,2U is given by [7]. 

 

Equation (14) will be analytically solved in Matlab 7.0, using the function dsolve; let 

 xy1 be the analytical solution of the equation (2),  xy2  and  xy3  the analytical 

solutions of the equation (14) for    1.6092,3.00,0.4 x and respectively for 

 .3.0,0.2231x  

We shall obtain: 
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Especially in the case of having no analytical solution at hand, the new procedure is 

interesting. The Lotka-Volterra equations are also called the predator-prey equations. The 

equations are a pair of first-order, non-linear, differential equations. They are needed to 

describe [8] the dynamics of biological systems in which two species interact with each 

other.  
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One is the predator and the other, its prey. If there are not enough preys, the 

population of predators will decrease. And if the population of preys increases, the 

predator population will also increase.  

Furthermore, the Lotka-Volterra equations [6] are used in economics. Similar 

relations are established between different kinds of industries, as an example between 

engine construction and mining. Furthermore, the economic cycle in general can be 

simulated. 

They develop in time according to the pair of equations [8]: 
 

 

 













xy
t

y

yx
t

x





d

d

d

d

 (15) 

 

where: 

 

 10y  is the number of predators (for example, lions); 

 800x  is the number of preys (for example, zebras); 

 
t

x

d

d
 and 

t

y

d

d
represent the growth of the two populations against time; 

 t represents the time; 

 3 , 1.0 , 8.0  and 002.0 are parameters representing the interaction 

of the two species. 

 

The development of each species during a certain time interval can also be described 

by the upper procedure in the form of a polynomial. The values for t should be adapted to 

the procedure. 

Fig. 3 shows that the method is useful if we seek to approximate (green) the function 

of one population(red).  

 

 

 
FIG. 3. The approximative solution of the population 

 

The number of preys can be approximated easily by using the procedure above. 
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CONCLUSIONS 

 

A new representation for fuzzy systems in terms of additive and multiplicative 

subsystem inferences of single variables is presented to prove that fuzzy systems are 

universal approximators to continuous functions on compact domain. 

This representation enables an approximate functional characterization of the inferred 

output. The form of the approximating function depends on the choice of polynomial, 

sinusoidal, or other designs of subsystem inferences.  

With polynomial subsystem inferences, the approximating function is a sum of 

polynomial terms of orders depending on the numbers of input membership functions. 

Since polynomials are universal approximators [7,8,15], the same can be concluded 

regarding fuzzy systems. 

With proper scaling, the sinusoidal inferences produce a set of orthonormal 

inferences. 

The present work also includes two applications about constructing a fuzzy 

approximator for a function expressible in terms of sums and products of functions of a 

single variable. In this case, subsystem inferences that emulate the various single variable 

functions are adopted.  

The second application [8] shows that the presented procedure can very well 

approximate a differential equation. In the case of no analytical solution the procedure, 

this is a good alternative. 
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Abstract: In this paper we consider not only the classical weakly stationarity of time series 

(same expectation, same variance and same correlations). We also aim to consider the strict 
stationarity of a time series. Therefore, each observation Xi from the time series X1,..., Xn has the 

same cumulative distribution function. 

We consider that the common cdf F is the common marginal distribution of X1,..., Xn, and the 
dependence is expressed by a copula C of order n. An Archimedean copula is used, and the 

parameters (of the marginal cdf and the copula parameter θ) are estimated using the maximum 

likelihood method. 
 

 Keywords: Time series, stationarity, smoothing. 

 

1. INTRODUCTION 

 

The definition of the term “copula” can be easily found in literature [2,15,10]. For 

time series, we use the theorem of Sklar, which establishes that every multivariate 

cumulative distribution function H (in our case the multivariate cdf of  1,..., nX X ) can 

be written  

      1 1 1,..., ,...,n n nH x x C F x F x , (1) 

where Fi is the marginal distribution of Xi. 

For the copula C we use in this paper Archimedean copula, for which it is proved 

[2,8,11] that there exists  : 0,1 R   decreasing and convex with  1 0   having the 

pseudo-inverse g (  g y x  if x exists in such a way that  x y  , otherwise   0g y  )  

so that 

   1
1

,...,
n

n i
i

C u u g u


 
  

 
 . (2) 

 

For the Clayton copula, we have 

 

   
1

1

, 0
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g x x
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
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


 


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

  

. (3) 

For the Frank family of copulas we have [2,15] 

 

   
   

1

1

1
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,
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e

e
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g x e where e
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. (4) 
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For the Gumbel-Hougaard copula we have [10,11] 

   

 
1

ln
, 1

x

u u
with

g x e








  


 

. (5) 

For the Gumbel-Barnet copula we have [15,11] 

   

 
1

ln 1 ln

, 0 1xe

u
u

with
g x e













 
 



. (6) 

For the Ali-Mikhail-Haq copula we have [15,2] 

   
   1

11
1

1

ln
, 1 1

x

u

e

u
with

g x 








 











   
  



. (7) 

 

The Frank, Gumbel-Hougaard and Ali-Mikhail-Haq copulas contain the product 

copula (independence case) for 0  , 1  , 0  , respectively. For the other copula 

families (Clayton and Gumbel-Barnett), the product copula is in both cases the limit case 

0  . 

Some copulas have been simulated in [15], and methods for simulating random 

variables and Monte Carlo methods can be found in [14]. 

When we consider the Gaussian time series, we test the weak stationarity using the 

Dickey-Fuller unit root test [7], and we stationarize the time series. Next, we find the 

ARMA model using the Box-Jenkins methodology [4,9,12]. If after we have found the 

ARMA model we have non-significant autocorrelations and partial autocorrelations, it 

means that in the Gaussian approach the model is correct. But, if we apply the BDS 

(Brock, Deckert and Skheinkman) test [3] and we obtain that the errors are not mutually 

independent and with the same distribution, and in the Gaussian approach the model is 

correct, it means that we must use a non-Gaussian approach. This test is as follows. First, 

we compute the probability 

    ; 1 1,..., ,...,k i i k j j kP P X X X X        (8) 

for a given ε empirically, where the above norm is the infinite norm (the maximum 

absolute value). If the values are independent with the same distribution, we have  

; 1;

k

kP P  . (8') 

Therefore we compute 

; 1;

;

;

k

k

k

k

P P
Z

 






 , (8") 

where 2

;k   is the variance of the above numerator. The computation of 2

;k   is presented 

in [3], where it is mentioned that Zk;ε is asymptotically normal. Therefore, we have to 

compare these values to the cuantiles of the standard normal distribution, for 
max2,k k . 

  

2. THE MODEL 

 

In order to apply the copula for strict stationary time series, we first have to take into 

account that strict stationarity yields to the same cdf for Xi. Therefore, in (1) we have 

iF F  (the same marginal cdf). The copula C models the dependence between the time 

series values at different moments. We call this copula autocopula, by analogy to the 

classical use of autocorrelations for classical ARMA models. 
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For estimating the parameters of the model, we take into account [15,2] that the 

multivariate pdf  
11 ...

,...,
n

n

H
n x x

h x x 
 

  can be written 

           1
1 1 1

,...,
n n n

n

n i i i i i i
i i i

h x x g F x F x f x 
  

     
 
   , (9) 

where  f i   are the marginal pdfs. 

Denote now by α the vector of parameters for the common marginal distribution 

having the cdf F, and by  
1

;
n

i i
i

V f x 


 %  the likelihood in the independence case (when 

X1,..., Xn are independent identical distributed, with the pdf f and cdf F). In the time series 

case, the above common pdf h is in fact the likelihood V, which must have a maximal 

value of 5 (we apply the maximum likelihood method). By computation, we obtain 
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For solving the system of equations given by derivative on α components (α can be 

multiple, as in the normal case, when we have two parameters – the expectation and the 

variance), ln 0
k

V





  and the derivative on θ, ln 0V





 , we try to express first the log-

likelihood, because it is possible to separate α and θ. For instance, in the case of Clayton 

family we obtain 
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We notice that the last term, lnV% does not depend on θ, the first sum does not depend 

on α, and the sum of logarithms multiplied by 1   does not depend on θ. These make 

the computations easier, and we obtain for 0   
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  (12) 

For the limit case, 0   we obtain, using l'Hôpital 
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We can also prove that the Hessian is in the general case 0   
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. In the case of the Clayton copula, the Hessian is negatively defined. For 

this reason, the non-linear system 
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is solved by means of the Newton-Raphson method, solving the involved linear system 

having the matrix of this system the Hessian (the Jacobean in the general case of non-

linear systems) and the right sides given by the actual values of the left sides in (14) with 

the inverse sign by the Cholesky method. Before applying the Cholesky method, we 

multiply first the linear system by (-1) in order to obtain a positively defined matrix of the 

linear system. 

 

3. APPLICATIONS 

 

Consider the ROBOR rate between January 1, 2017 and April 3, 2018 (313 data 

points, observed daily, five days/ week). 

First, we apply the classical Box-Jenkins approach. If we apply the Dickey-Fuller test, 

model III, we obtain the coefficients for β, Φ and γ 0.00545, -0.00635 and 55.92 10 , 

with the Student statistics 1.4531, -1.64969, respectively 2.5674. The time series is not 

stationary. After removing the moving average [9] of order 2q  , we obtain the new 

coefficients for β, Φ and γ -0.08792, -0.88554 and 0.000494, with the Student statistics -

0.08976, -15.6655, respectively 0.091049. In fact, due to small values, the residues after 

removing the moving average is multiplied by the constant number 1000. 
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The SARMA stationary model is 

1 2 5 10.55063 0.33823 0.2505 0.5t t t t t tX X X X a a         

The maximum correlation in absolute value for the white noise at among the first 36 is 

33 0.181  , and the maximum partial correlation is 28
ˆ 0.159  . For the first ten, the 

maximum autocorrelation and partial autocorrelation in absolute value are for lag 7: -

0.081 and -0.073. This means that we have obtained the correct Gaussian model. 

But, if we apply to the obtained white noise the BDS (Brock, Deckert and Sheinkman) 

test, we obtain the Z statistics for maximum dimension 6 and 0.7   between 5.8352 

(dimension=2) and 9.23336 (dimension=6). Therefore, we reject the null hypothesis of 

independence and same distribution, with the 1% threshold. 

In the non-Gaussian case we first apply the Mann-Kendal test for initial data, and we 

obtain the statistics 17.19643Z  , which means that ROBOR data follows an  increasing 

trend. After that, we apply the same linear transformations as in the Gaussian case, the Z 

statistics of Mann-Kendall test becomes 0.31851Z   , which means a non-significant 

decreasing trend (in fact we accept the null hypothesis of lack of trend). 

Consider now the Clayton copula and the exponential marginal distribution. We 

obtain the following results, after 10 iterations using Newton-Raphson method. 

 
Table 1. Results if we use the Clayton copula and the exponential marginal distribution 

Value Initial Final 

λ 0.0101 0.0206 

θ 0 10.33141 

ln V -1751.25231 -89.08146 
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CONCLUSIONS 

 

In [5] we have presented a heavy tail smooth for non-stationary long memory time 

series. In this paper, we use auto-copula for stationary long memory time series: an 

Archimedean copula is the same dependence between Xn and Xn-1, and between Xn and X1. 

Before applying a model for a stationary time series, we have to test first the 

stationarity. In the Gaussian case, we apply the Dickey-Fuller unit root test, as we have 

mentioned before. But in the non-Gaussian case of our paper, we have to use other tests. 

For instance, we apply the Mann-Kendall test for lack of trend, used in [13] for 

discharges of Danube River. After we have found an increasing trend for the initial data, 

we have made the same transformations as in the Gaussian case to obtain stationary time 

series. Nevertheless, the Mann-Kendall test confirms the stationary of the transformed 

time series. An open problem is to check other transformations for non-normal 

distributions, for instance the ratio in exponential case. Such transformation avoids 

negative values, and we do not need to subtract the minimum value for obtaining positive 

values of last time series. 

Another open problem is to solve the non-linear system (14) for other types of copula 

for which we can not separate the parameter θ from the marginal parameters, as in the 

Clayton case.  
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For instance, we can use the recurrence formulae obtained in [6] for the Frank copula, 

Gumbel-Hougaard copula, Gumbel-Barnet copula and Ali-Mikhail-Haq copula. For this, 

we need an analogue recurrence formula, but for mixed derivatives including u, and θ. 

In the exponential case discussed in our paper, the non-linear system (14) has two 

variables: λ and θ. Therefore, another open problem is to consider other marginal 

distributions as well. The difficulty is not the number of variables, but the computation of 

the involved marginal cdf in (10) - (13), (12') and (13').  
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Abstract: The aim of this paper is to examine the random walk in two of the stock indexes of , 

the Bucharest Stock Exchange (BET and BET Plus). Random walk hypothesis states that stock 
prices move randomly; as a result, the expected profit for the speculator is zero. Many economists 

believe that random walk can be applied to test the efficient market hypothesis in the weak level. 

Early literature used stochastic processes to test whether prices precluded everyone from easy 
profit and whether prices were following those processes or not. When stock prices do not 

fluctuate randomly, some investors can use past stock prices to gain an abnormal return. 

Assuming rationality and risk neutrality, a version “of the efficient market hypothesis states that 

information observable to the market prior to week t should not help to predict the return during 
week t“. In other words, stock returns are not correlated to one another; consequently, the 

statistical model of the efficient market hypothesis holds and changes in returns are independent  

We employ several tests, such as econometric tests, Monte Carlo simulation using AI methods: 
Naive Bayes’ Classifier, K Nearest Neighbors, Support Vector Machines. Daily data on returns 

covered the period February 2016 – November 2017. These tests support the common results that 

the random walk theory is valid for the two indexes therefore the Bucharest Stock Market is weak-
form efficient.  

 

Keywords: Random Walk, Stock Market, Efficient Market Hypothesis, Weak form efficiency, K 

Nearest Neighbors, Support Vector Machines 

 

1. INTRODUCTION AND MOTIVATION 

 

The Efficient Market Hypothesis (EMH), also known as Random Walk Theory, refers 

to the efficiency of information on stock markets. In economic literature, the term 

efficient market is used to explain the dependence between available information and 

stock price. These concepts were introduced and defined by Eugene Fama [3] in 1970, 

whose perspective has been that financial market efficiency is being driven by the speed 

of response and the adjustment of prices to new information in the market. 

More specifically, in the context of an efficient market, the prices of the current 

period's shares should fully reflect the relevant information in order to be able to forecast 

future prices so that there is no possibility of generating further profits using this 

information. Therefore, the main criteria in terms of efficiency with respect to what was 

described are: the extent to which the information is absorbed, the time it takes for it to 

accumulate, and the type of information so incorporated. 

The price of an asset reflects the current value of the revenue it is speculated to 

generate in the forthcoming period. The expected revenue is influenced by determinants 

such as risks of volatility, liquidity, or bankruptcy.  

mailto:sorina.gramatovici@csie.ase.ro
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While prices are determined and set reasonably, price changes are expected to be 

random and unpredictable, because new information is unpredictable by its nature. Thus, 

capital market prices are considered to follow a random walk process. 

As examples of random walks, we mention throwing a coin or selecting a sequence of 

numbers from a random number table. Looking back to the financial markets, the current 

price is independent and uncorrelated with other evolution patterns of the past price. 

Let X be a stochastic variable which follows a random process defined by the 

following equation 

 
  (1) 

 

where  is the drift parameter,  identically and independently distributed prediction 

error. 

The test of efficiency in its weak form has been widely studied in financial literature. 

Ayadi and Pyun investigated in [1] the prices of stock traded on Korean stock market 

between January 1984 and December 1988 and proved that The Korean stock market is a 

random walk. Kim and Shamsuddin [4] report the existence of a random walk for Hong 

Kong, Japon, Korea and Taiwan and rejected the random walk hypothesis for Indonesia, 

Malaysia and Phillipines. Lim et al. tested in [5] the efficiency of Shangai and Shenzhen 

stock markets and concluded that China’s stock market has a week form efficiency. More 

recently, Chaibi [2] tested the weak form efficiency according to two indices of the Hong 

Kong stock exchange between July 1997 and December 2012 and rejected the random 

walk hypothesis pursuant to both of these indices. Mishra et al. [7] tested the random 

walk hypothesis for the Indian stock market using 19 years data on six indexes from 

National Stock Exchange and Bombay Stock Exchange. They used a unit root test that 

simultaneously accounts for heteroskedasticity and structural breaks and proved that 

Indian stock indexes are mean reverting. 

The aim of the present paper is to analyze the validity and correspondence with the 

real markets of the theoretical concept of random walk process. In this respect, the 

practical illustration of the Romanian capital market case was considered relevant, 

namely by studying the evolution of two of the most important indices evaluated by the 

Bucharest Stock Exchange, i.e. BET and BET Plus using daily data throughout a period 

of two years. The random nature of these time series strictly corresponds to the real case 

if and only if the market is efficient in the weak form. Through the current paper, we 

intend to study the efficiency of the Romanian capital market, contributing to the results 

obtained in the existing literature. 

Evaluating shares and stock indices is a crucial function of the financial markets, as it 

leads to the possibility of players' making investment strategies. Evaluating the value of 

shares is of particular importance to determine the behavior of markets, its behaviour 

being possible if and only if the type of efficiency is known. Remark that the available 

information is crucial because it can lead to arbitrage. Acquisition and sale of similar 

share simultaneously on two different markets as a result of its differences in price 

conceptualizes the idea of arbitrage. The effect of arbitration plays an essential role in the 

efficiency of a market because this phenomenon brings prices back to their intrinsic 

value. 

If markets are efficient in a weak sense, it is not possible for players to buy a share 

whose price is underestimated and to sell them on other markets, where they are fairly 

valued or overestimated. The very event described makes it impossible for the players 

involved to „beat the market”. 
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In this respect, the obvious question is still: why do investors analyze the market with 

sophisticated and time-consuming tools if their efforts are futile?  

This seems to be the main concern of the current paper, since totally rational investors 

would not play or invest if they did not have the chance to beat the market. As Lo, 

Mamaysky and Wang [6] asserted, "With the help of sophisticated non-parametric 

techniques ... [analysts] would only enjoy a modest prediction power", often insufficient 

to play based on the fundamentals of these overwhelming strategies. 

This paper is structured as follows. Section 2, which is preceded by the present 

introduction, covers the theoretical and methodological aspects that are the solid 

foundation of the case study undertaken in Section 3. Both sections deal in a 

multidisciplinary manner with the characteristics of the time series studied in order to test 

the existence of the "random walk" phenomenon, then to make predictions using 

econometric methods, but also using artificial intelligence. The final section summarizes 

the conclusions of the analysis – its significance and validity, and the author's 

contribution to the literature. 

The period of February 15, 2016 - November 2, 2017 has been analyzed, namely the 

data on BET and BET Plus stock exchange index values from the Bucharest Stock 

Exchange. The data was collected from the official website of the Bucharest Stock 

Exchange (www.bvb.ro) and processed by the authors to perform the relevant tests in 

order to achieve the above mentioned objective. 

This paper is outlined by the analysis and tests performed on the BET and BET Plus 

time series assuming rationality and risk neutrality, and not taking into account 

transaction costs and other costs that may be charged for players on the capital market. 

The analyzed period (435 observations) was the subjective decision of the author, and no 

attempt was made in order to identify an optimal dimension of time to observe indexes’ 

patterns. 

 

2. METHODOLOGY 

 

2.1 The phenomenon of “ARCH Effect”. Financial time series are frequently 

characterized by volatility, a phenomenon that is modeled by processes such as ARCH. 

The ARCH effect defines the hypothesis of financial market’s speculators estimating the 

variance over a certain period of time with the information that has appeared in the 

previous period, and included in the model by the term ARCH. This context describes the 

well-known concept of "volatility clustering", which means that periods of high 

magnitude change are followed by periods of small fluctuations. In other words, 

significant changes in financial time series tend to cluster together, and low magnitude 

changes are of the same behavior. If the data series is affected by the ARCH, term, they 

might be predictable to a certain extent and respond to market speculation (a well-known 

example would be the weekend effect). 

By testing the presence of this phenomenon with the ARCH LM test, we introduce the 

null test hypothesis  

 

 
and the alternative 

 
H1: There is an arch effect 

 

The regression to be estimated is given by the following equation. 
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(2) 

 

where ut represents the residue of the initial regression estimated by the ordinary least 

squares method. 

The statistic test is , where T is the number of observations included in the 

analysis, and R
2 

is the coefficient of determination of the initial regression. It follows a 

Chi-square distribution with p degrees of freedom. 

 

2.2 Naïve Bayes Classifier. The naive Bayesian algorithm is a classification 

technique based on Bayes' theorem, based on the hypothesis of independence of 

predictors. In other words, the naive Bayes Classifier assumes that the presence of a 

certain characteristic in a class is uncorrelated with the presence of any other 

characteristic. For example, a fruit is identified as an apple if it is red, round, and has a 

diameter of about 5 cm. Although these characteristics depend on one another or, more 

clearly, the existence of each characteristic is dependent on the existence of the other, all 

these properties contribute, in an independent manner, to the likelihood that this fruit 

being called apple - and that is why this classifier is called "naive". 

The naive Bayesian classifier is useful for large data sets, and, despite the simplicity 

of the assumptions on which it is based, it is known that it provides better performance 

than other complex classification techniques, and therefore has been included in this 

study. 

Bayes' theorem represents a method to calculate the posterior probability P (c/x) based 

on the posterior probability of the class P(c), the posterior probability of the predictor 

P(x) and the probability of a predictor in a given class P(x/c), as follows. 

 

 

(3) 

 

Where 

 

 
(4) 

 

2.3 K Nearest Neighbors. The KNN method is a classification algorithm that 

includes all the observations and classifies the new observations generally based on a 

measure of similarity, and in most cases, this is a function of distance. The KNN has been 

used since the 1970s in statistical estimations and in the pattern recognition as a non-

parametric technique. 

The algorithm assumes that a new observation is classified based on the vote of its 

nearest K neighbors. A new instance is assigned to the most common class among its 

neighbors based on the distance function. The most widely used distance functions are: 

Euclidean distance, Manhattan distance and Minkowski distance, for continuous 

variables, and Hamming distance for discrete variables. 

The decision to determine the optimum value for K is to be taken by inspecting the 

data series. Generally, a high K value leads to more accurate results, as it reduces noise. 

The cross validation procedure is another method by which the value of K is computed.  

Based on the empirical studies already performed, for most data sets, a value of K 

between 3 and 10 produces satisfactory results and, moreover, more efficient results than 

the 1NN method.  
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2.4 Monte-Carlo Simulation. The Monte-Carlo simulation method is used in many 

branches of science in order to quantify the expectations of the evolution of a variable of 

an index whose behavior is similar to a random walk process.  

In this case, however, no analytical function can describe its evolution, and the 

optimal decision is to generate random samples describing these variables course of 

action. The accuracy of the estimates obtained by the Monte-Carlo simulation method is 

inversely proportional to the number of extractions.  

In the current study, the type of simulation used is called "time-driven", in the sense 

that, for this given period, we have built different scenarios that can lead to the 

fluctuations in the analysis. 

If a stock market player uses the Monte-Carlo simulation for a past period, for which 

the evolution of the index in the analysis is already known, they will be aware of the 

various trajectories that this index could have followed, and thus the magnitude of the risk 

assumed it by choosing a discreet strategy among all possible. Computing a strategy, they 

certainly take need to take into account both the risk prize and the magnitude of a 

potential loss. Loss has to be taken into account, and it plays a crucial role in the 

computation of the expected profit, because by visualizing the many trajectories that an 

index may follow, it the high probability of the monetary loss involved can obviously be 

deduced. However, the more players are involved in capital market’s game, the greater 

the risk, and so, the importance of using the Monte-Carlo method is obvious. The Monte-

Carlo simulation is even superior to "What If" analysis, because in many cases, it is very 

difficult to identify or test the determinants of fluctuations in an index on the stock 

market. Moreover, when making a decision, it is especially important to include a 

graphical view of the various scenarios, so that the decision maker may becomes aware of 

the probability associated with the occurrence of each state of nature.  

 

2.5 Support Vector Machine. Support vector machine is a supervised learning 

algorithm that can be used in regressions, but is especially suitable for classifications. In 

this method, each observation is represented in an n-dimensional space (where n is the 

number of states of the variable), the value of each state being represented by a 

coordinate. Classification is carried out by determining the hyperplane that segregates 

these classes, and in our investigation, the separation of the two classes. 

 
FIG. 1. Support Vector Machine representation [10] 

 

Support vectors are simply the coordinates of an individual observation, and the 

support vector machine is the hyperplan, the border that optimally segregates the two 

classes. 
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In order to correctly determine this hyperplane, the shape of the nucleus must be 

computed. For most financial data sets, it is linear. Also, the gamma coefficient is 

associated to the kernel; the higher the value of the kernel, the more the algorithm will try 

to classify a new observation only if it has an almost perfect identification with a 

particular class.  

However, the disadvantage of a too high gamma coefficient is that some of the 

observations will not be classified. 

 

3. EMPIRICAL RESULTS 

 
3.1 ARIMA-Modelling and Seasonality. ARIMA-modelling the evolution of stock 

indices is appropriate, as, mainly, in the context of financial time series there are trends, 

seasonality, errors, shocks, all these factors being taken into account in this type of model. 

To perform the procedure, we used the stationarized data series. For the analyzed period, 

we included monthly BET and BET Plus indices in order to capture the phenomenon of 

seasonality along with the influence on the evolution of time series. Moreover, we 

considered it important to add dummy variables corresponding to each month of the year 

in the analysis - to test whether they are statistically significant or not. Although, 

generally, we have to include 12 seasonal factors, we chose to exclude December, 

because, including the intercept, the dummy trap would have occurred. 

The ultimate goal of the analysis is to predict the average values of the indices over 

the next two months based on the chosen model. 

 
FIG.2. ARIMA Modelling 

 

The most appropriate model was chosen using the Akaike informational criterion, out 

of 100 estimated candidate models. The minimum value (13.6714) corresponds to the 

most effective model. Proceeding with this analysis, the current values and the predicted 

values are presented in the table below. 
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Table 1 - Real values vs. predicted values 

Month Average real value Average predicted value 

October 7946.01 7868.38 

November 7783.36 7955.372 

 

As these values differ significantly from the real ones, and moreover, if the BET 

index actually shows, on average, a decrease from October to November, and using 

ARIMA modelling, it was forecasted to increase by almost 100 we can safely conclude 

that, even if the presence of the seasonal factors in the analysis is taken into account, the 

evolution of the Bucharest Stock Exchange still cannot be predicted, and therefore, there 

is a random walk. 

 

3.2 Correlation Between BSE and international stock markets. Furthermore, we 

consider crucial to analyze the correlation between the evolution of the main indices of 

the Bucharest Stock Exchange and the evolution of the international stock markets. In this 

respect, it is relevant to observe the fluctuations of the US S&P500 index, for the same 

period.  

By standardizing the data, we achieved a very strong correlation of 91.67% with the 

BET index and 92.29% with BET Plus. 

Initially, not considering the seasonal factors, we attempted to predict the BET and 

BET Plus indices based on their own previous day value (taking into account the short-

term dependency, the concept called volatility clustering) and the value of the previous 

day of the S&P500 index. The hypothesis is that, including a small lag over time, the 

indices studied follow, however, faithfully, the evolution of the main stock exchanges on 

the international level. 

We present  below the estimated models along with their most important properties. 

 

 
 

 
 

Table 2 - Statistical properties of models 

Index Root Mean Square Error F-statistic Probability of Fischer-Snedecor test 

BET 0.107 29463.05 0.000 

BET Plus 0.108 32068.32 0.000 

 

Although the estimated models are statistically significant, the forecast of the two 

indices based on them was not performing well. It is obvious that, using this type of 

technical analysis of the market, one cannot beat the market. It is to be noticed that the 

predicted values correspond to the actual values in very few days of the period 

considered. Moreover, for both indices, the upward trend of their evolution from the 

beginning of the period studied until the beginning of the third quarter of 2017 was 

validated. Otherwise, neither the magnitude nor the sign of the fluctuations were correctly 

predicted. 

However, in order to improve this analysis, we explicitly admitted the existence of  

trends and included in the two models the effect of the seasonal factors in the attempt to 

explain precisely the fluctuations of the data series. We excluded the December analysis 

as a seasonality factor to avoid the dummy trap. The models obtained are as follows. 
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Both models are statistically significant, but what is relevant in the analysis is that the 

estimation confirmed the significant effect of the seasonal factors. However, based on the 

probability associated with the t-Student test, it is to be noted that the seasonal effects of 

October and November are not significant. Based on these models, the results of the 

forecast are graphically represented below. 
 

 
 

FIG. 3. Prediction of BET index based on short-past evolution of S&P500 

 
FIG. 4. Prediction of BET Plus index based on short past evolution of S&P500 
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The graphs presented certainly point out to a more qualitative forecast, certainly due 

to the inclusion of seasonal factors, but also to the fact that the chosen method is static, 

which means that the predicted value at a certain iteration is based only on past real 

values of the index, and not the previously predicted values. Thus, in quantitative terms, 

we conclude that the predicted values of the BET index in the analyzed period correspond 

to 96.64% with the real values, and the predicted values of the BET Plus index are 

correlated with the real values in a higher proportion of 96.91%. 
 

  
 

FIG. 5. BET Plus and BET index prediction based on seasonality and short term evolution of NYSE index 

 

Based on these results, the international players' evolution is certainly an important 

determinant of the evolution of the Bucharest Stock Exchange and we naturally want in a 

more detailed analysis to test whether the BET and BET Plus indices are influenced 

by the recent-short or long-term evolution of the S&P500 US market index. In this 

attempt, we have improved the model by taking into account the values for the last 5 days 

of the S&P500 index, thus obtaining the following estimation. 
 

 
 

 
In this approach, we note that, based on the Wald test, these newly introduced 

coefficients are not significantly different from 0 for both of the time series. Actual values 

and predicted values are shown below. 
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FIG. 6. Predictions on BET and BET Plus index based on past 5-days evolution of NYSE index 

 

For the BET index, the correlation coefficient between the actual values and the 

predicted values is 96.57% and for the BET Plus index it is 96.85%. In both cases, 

predictions based on the recent past value are better than considering a longer period. 

This behavior is probably due to the dynamic evolution of stock market indices; so, even 

if some shocks emerge, they quickly disappear and it would not be effective to include 

more past days in predicting the indexes in the analysis. 

Finally, the most important determinant in the forecast being clearly the inclusion of 

the seasonality phenomenon, we added to the model that includes the seasonal factors a 

moving average term, an autoregressive term, and finally an AR and a MA term 

simultaneously. Based on the initial model and the three additional models, we have 

computed the average predicted values of the BET index evolution.  

The models obtained are statistically significant, considering the validity of the 

Fischer-Snedecor test, and they take the following form. 
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The overall representation of these time series together with the predictions obtained 

are presented below. 

 

 
 

FIG. 7. Comparison between methods 

 

In an attempt to achieve higher performance, predictions were computed by means of 

the static method, so only real values were taken into account. The average of the 

predictions is thus the most elaborate methodology among those tested in this study to 

predict the BET and BET Plus indices. The average of predictions along with real values 

are shown in FIG. 8. 
 

 
 

FIG. 8. Actual vs predicted values based on Forecasting Average best method 

 

Although the Forecasting Average model based on the four sub-models is the most 

qualitative, the differences between the actual and the predicted values are still 

significant, with no significant profitability to be obtained if one uses analytical 

forecasting techniques. The predicted values increase when the real ones increase as well, 

and they decrease when the real ones show a negative evolution, but the magnitude of the 

fluctuation differs, sometimes significantly. 
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Moreover, as we have previously proved, it is not more significant to consider the last 

5 days of the S&P500 than the previous day exclusively; so, any forecast obtained using 

analytical methods is anyway valid in the short term, but the evolution will instantly 

change significantly as compared to the one expected by speculators.  

Once again, we have demonstrated that there are no profitable opportunities for 

analysts. Not even including correlation to international stock markets, we cannot predict 

the evolution of stock indices in order  to gain surprofit. 

As the quality of the forecast has increased considerably when considering the 

seasonal effect, we conclude that, it is important to thoroughly study and take into 

account all the determinants that exist in capital market. Even in this ideal case, shocks 

will remain unpredictable. However, the costs of these analyzes, as well as the transaction 

costs and other costs that appear on the real financial market, make these analyzes 

meaningless when players want a significant profit. 

 

3.3 Predictions based on learning techniques – Naïve Bayes’ Classifier and KNN. 

The naive Bayesian classifier is a prediction technique whereby the data that compose the 

training set (70% of the data set) is converted into a frequency table. The probability 

associated with each event (selling or keeping the portfolio in the same structure – hold – 

as considered optimal strategy) is calculated and then computed the probability table 

based.  

Using the Bayes’ posterior probability formula, these probabilities are computed for 

all classes  – the posterior probability for the sell strategy and the posterior probability for 

the hold strategy. Being the first index of Bucharest Stock Exchange, we considered 

relevant to include the BET index in the analysis.  

A simple strategy is as follows: if there are positive fluctuations, the player will 

choose to choose the Buy event; otherwise, one will choose the "Hold" event. In fact, 

considering the Naive Bayes classifier, at each iteration, the class with the highest 

posterior probability will be chosen. Based on these assumptions, the observations in the 

test set (30% of the dataset) predicted the correct strategy in 62% of the cases. 

 

 
 

FIG. 9. The performance of Naïve Bayes classification algorithm 
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Furthermore, based on the confusion matrix in FIG. 9., 80 observations were 

predicted in the correct "Buy" class, and only one observation was predicted correctly in 

the "Hold" class. However, Cohen's coefficient shows a very low value of 2%. This 

shortcoming can be corrected by trying, for instance, to redefine the category variable 

(i.e., the strategy), adding more variables in the analysis, or even selectively choosing the 

determinants that certainly the strategy decision.  

As for the k nearest neighbors method, we used the same test set and training set, and 

for both methodologies, we set the same seed to ensure the possibility of comparing their 

performance. The KNN method is one of the pattern recognition procedures, therefore, 

based on observations from the training set, for which we consider the real class known, 

we calculated the Euclidean distance between the observations in the test set and those in 

the training set. By initially setting k = 3, a new observation is classified based on the 

simple majority of the classes of the nearest three neighbors. For k = 10, we proceeded 

analogously and the results are provided below. 

 

 
FIG. 10. Performance of the KNN method (K=3 and K=10) 

 

Thus, we conclude that the KNN algorithm is more efficient than the naive Bayes 

classifier. Although accuracy is lower, it is important that the value of Cohen's coefficient 

increases considerably, so that for every class the ratio between the correctly predicted 

values and all  values belonging to that class is balanced. 

However, it is remarkable that considering only three neighbors, the quality of the 

algorithm was higher than choosing ten neighbors. This may be, for instance, due to the 

fact that the choice of the class for a non-classified observation by the simple majority 

determines that choosing an odd number of closest neighbors is certainly a rational 

decision. 

 

3.4 Monte-Carlo Simulation of the behavior of Bucharest Stock Exchange. In an 

attempt to establish a stock market optimal strategy, a player must consider all the 

trajectories that a stock index may follow in a given period of time. In this analysis, we 

chose to track the potential fluctuations of the BET index, being the first index of the 

Romanian stock exchange, which has highlighted the performance of the most liquid and 

active ten traded companies since the beginning of the BSE.  
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We considered it important not only to observe its past values but, above all, the vast 

trajectories that it could have followed in the context of different states of nature. 

By illustrating them as shown in FIG. 11, a decision maker whose purpose is to obtain 

profit from stock market games, will make rational decisions, because by conducting this 

analysis, one can compute the probability of assuming that a particular event, of all  

possible events, will take place and will generate the expected profit.  

In the context of such a dynamic system, this assumption is crucial, because if another 

event occurs, it will not bring the expected revenue or, in a pessimistic way of thinking, it 

can even produce significant losses. 

In fact, the player should propose a strategy, quantifying the effects of a possible error 

in which the expected scenario will not occur. 

 

 
FIG. 11. Monte Carlo simulation of possible trajectories of BSE 

 

3.5 Predictions based on Support Vector Machine learning technique. Predictions 

based on vector-based machines imply the division of the dataset into two subsets, as 

follows: one-third represents the test set, and two-thirds constitute the training set. To 

train the VSM, we considered the kernel to be linear, as in almost all cases, this type of 

kernel is suitable for the financial data series. 

For the entire dataset, an UPDOWN categorial variable was included, so that when 

the BET index shows positive fluctuations, the variable takes the value Up, and when 

decreases occur, the variable takes the value Down.  

Based on the training set, the support vector machine was trained to be able to predict 

the daily BET index fluctuations for the period included in the test set.  

Subsequently, the results obtained based on the supervised learning algorithm were 

compared with the actual fluctuations. 
 

 
FIG. 12. Performance of Support Vector Machine learning algorithm 
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The prediction in FIG. 12. coincide 53.79% with the actual results for the 145 

observations included in the test set. Although the algorithm has made accurate 

predictions in more than half of all cases, it does not guarantee that there will be 

profitable opportunities. 

However, the purpose of this analysis was to prove the possibility of predicting the 

sign of the Bet indexes, and not the magnitude of these fluctuations.  

This distinction should be highlighted as a decision-maker cannot compute the 

expected monetary value of making a decision (choosing a particular strategy), even if 

assuming that they he know for sure whether or not the index will show a positive or 

negative trend the next day. Stock market players generally have a varied portfolio of 

shares that can include both shares whose evolution follows the market, and other that do 

the contrary, so the magnitude of a change in the evolution of the BET index is of 

considerable importance. We can therefore conclude that the accurate forecast of 53.79% 

of the BET index trajectory does not add value to the market players’ strategies. 

 

CONCLUSIONS 

 

As proven in this paper, the challenge of the random walk theory on the Romanian 

stock market, to its players is outlined by the following context: if markets are efficient, 

then the prices of the shares at any time will represent the consistent estimation of their 

intrinsic value. In this respect, the fundamental analysis is useful if and only if the analyst 

has new information, which is not yet available on the market, so it was not considered in 

the formation of current prices. If the analyst does not have new information or contexts 

not yet exploited in the market, then the optimal decision should be choosing shares in a 

portfolio or transaction through a purely random procedure. 

In essence, the tests performed were not able to reject the hypothesis of describing the 

evolution of prices on the Romanian stock market as a random walk process. Further 

work may be developed. The present study could be extended in any of the following 

directions. 

 

 A random walk study can be carried out in the context of efficient market using 

data from the Sibiu Stock Exchange, in order to supplement the framework for the 

Romanian stock market. 

 The same analysis can be carried out using other analysis tools to improve the 

results and conclusions obtained in this paper. 

 The period under analysis can be extended in order to achieve more consistent 

results. 
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Abstract: Entropy represents a universal concept in science suitable for quantifying the 
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applications of the proposed entropy in water engineering are presented. 
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1. INTRODUCTION 

 

In this paper we present some types of entropy, the connections between them and we 

propose a new type of entropy starting from Tsallis entropy and Varma entropy, namely, 

the Varma-Tsallis entropy. For this proposed entropy we present some properties and a 

procedure that shows how it can be applied in practical applications. An application of the 

proposed entropy for the determination of the cumulative distribution function (cdf) for 

the recorded annual discharges of the Prut river and the Somes river. 
 

2. TYPES OF ENTROPY 

 

2.1. Boltzmann-gibbs-shannon entropy (referred to as the shannon entropy, 

1948) [7] 

o Discrete case 

Let X be a random variable that takes on values Nixi ,1,  , that occur with 

probabilities ,ip 0 1 , 1,ip i N    and 1
1




N

i

ip . The information gain from the 

occurrence of any event ix  , is given by  

2( ) log ( )i iH x p    (1) 

i.e. the information gained is the logarithm of inverse of the probability of occurrence. 

For the all N events the average of information gain SH  can be expressed as 

2

1 1

( ) log ( )
N N

S i i i i

i i

S H p H x p p
 

      (2) 

Equation (2) is the Shannon entropy, also called informational entropy. 
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o Continuous case 

If the random variable is non-negative continuous with a probability density function 

(pdf) )(xf  , the the Shannon entropy can be writen as: 

 2

0

( ) ( ) ( ) log ( )S SS H X H f f x f x dx



     (2’) 

 

2.2. Renyi entropy (1961) [6] 

Renyi proposed a generalized entropy of order α as 

o Discrete case 

1

1
( ) log , 0 , 1

1

N

i

i

R H X p

  
 

 
    

  
  (3) 

Remark. Renyi’s entropy contains the Shannon entropy as a special case 

(
1

lim ( )H X S


 ). 

o Continuous case 

0

1
( ) log ( ) , 0 , 1

1
XR H X f x dx

  


 
    

  
  (3’) 

 

2.3. Varma entropy (1966) [12] 

o Discrete case 

1

1

1
( ) , 1 , 1

N

i

i

V H X p  

    
 

 



     


  (4) 

o Continuous case 

1

0

1
( ) ln ( ) , 1 , 1XV H X f x dx  

    
 



 
 

      
  

  (4’) 

Remark:  

The Varma entropy includes, as particular cases, the Renyi entropy.  

 
1

0

1
lim ( ) ( ) log ( )

1
H X R X f x dx



 
 




  

   (5) 

and the Shannon entropy 

 
1

01

lim ( ) ( ) log ( )H X S f x f x dx










     (5’) 

 

2.4. Kapur entropy (1967) [3] 

o Discrete case   

1

1
,

1

1
( ) , , 0, 0

N

i

i

N

i

i

p

K H X

p

 

 


   
 

 





    





 (6) 

o Continuous case 

 

 

0
,

0

( )
1

( ) , , 0, 0

( )

X

X

f x dx

K H X

f x dx



 


   
 




    







 (6’) 
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2.5. Tsallis entropy (1988) [10] 

o Discrete case 

   1

1

1
1 , 1,

1

N
m

m m i i

i

T H X p p m m R
m





    


  (7) 

o Continuous case 

  
0

1
( ) ( ) ( ) ( ) , 1 ,

1

m

m m m XT H X H f f x f x dx m m R
m



     
   (7’) 

Remarks: 

1. For 1m   Tsallis entropy converges to Shannon entropy. 

2. For 0m   Tsallis entropy is concave and for 0m   Tsallis entropy is convex. 

3. For all m the Tsallis entropy decreases as m increases. 

 

2.6. Varma-Tsallis entropy 

If we denote  

                                                                                                                      (8) 

o Discrete case 

 
 

 
 

(9) 

o Continuous case 

 

(9’) 

The equation (9’) becomes  

 
 

(9’’) 

Thus  

 
(10) 

 

Let   be a parameter. Then 

 (10’) 

 

3. PROPERTIES OF THE VARMA-TSALLIS ENTROPY 

 

3.1. Concavity, convexity 

It can be shown that for 

     
1 1 1

0 1 , , , (1 )i i i i ii N i N i N
a P p Q q G g ap a q

     
         (11) 

then  

i) 

 (12) 

 

for  
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ii) 

 (13) 

for  

iii) 

 (14) 

for  

iv) 

 (15) 

for    

 
 

3.2 maximum value 

It is well known that the Tsallis entropy attains an extreme value for all values of m 

when all , 1,ip i N are equal, i. e. 
1

ip
N

  and this extreme value is  

1

,

1

1

m

m extreme

N
T

m

 



 (16) 

For 0m   this extreme value is a maximum value and for 0m   this extreme value is 

a minimum value. Considering the equations (10), (10’) the extreme value for Varma-

Tsallis entropy will be given by   

 

 
(17) 

 

4. THE PRINCIPLE OF MAXIMUM ENTROPY 
 

Considering the following principles of ancient wisdom: 

- “speak truth and nothing but truth 

- make use of all the given information you are given and scrupulously avoid using the 

information not given to you 

- make use of all the given and be maximally uncommitted to the missing information 

or be maximally uncertain about it” [9], E. T. Jaynes (1957) [1,2] formulated the principle 

of maximum entropy (POME), which states that “one should choose the distribution that 

has the highest entropy, subject to the given information”.  

The implication here is that POME considers all of the given information and, at the 

same time, avoids consideration of any information that is not given. This is consistent 

with Laplace’s principle of insufficient reason (or principle of indifference), according to 

which all outcomes of an experiment should be considered equally likely unless there is 

information to the contrary.  

Therefore, POME enables entropy theory to achieve the probability distribution of a 

given random variable [8]. 

To obtain the probability distribution of a given random variable by POME, it can be 

used the following procedure: 

- fix the kind of entropy, in this case Varma-Tsallis entropy (9’)  

- give the constraints 

- maximize the entropy by POME 

- obtain the probability distribution according to constraints 

- determine the Lagrange multipliers 

- determine the maximum entropy. 
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4.1 SPECIFICATION OF CONSTRAINTS 

Given a sample of random variable X,  1 2, ,..., Nx x x , a type of restriction can be 

given by the following equations 

0

( ) , 0,1,2,3...k kx f x dx x k



   (18) 

where , 0,1,2,3...kx k  are empirical moments of random variable X.  

Remark: In water engineering, empirical moments k=0,1,2,3 are considered. 

The constraints (18) are not sufficient to determine ( )f x  uniquely, because there may 

be many, even infinity of probability distributions satisfying (18).  

 

4.2. Entropy maximization using lagrange multipliers 

To determine ( )f x  we should maximize the Varma-Tsallis entropy (9’) subject to 

(18) using the method of Lagrange multipliers. 

There are two fortunate circumstances favoured the great success of the POME, since 

in all optimization problems the difficulties arise when we have to decide whether 

- the extreme value found is a maximum or minimum 

- the maximum obtained is local or global 

- the non-negativity constraints are satisfied 

namely: the Varma-Tsallis entropy function is a concave function and the pdf is 

always non-negative. The Lagrangian function L is given, in this case, by  

 
1

0

0 0

1 0

1
1 ( ) ( ) 1

( ) , 1,2,3...

m r

k
i i

i

i

L f x dx f x dx
m r

x f x dx x k





 
 





   
       

    

 
   

 

 

 

 (19)  

where , 1,i i k   are the Lagrange multipliers. 

Differentiating equation (19) with respect to ( )f x  and equating the derivative to zero, 

we obtain: 

 
2

0

1 1
0 ( ) , 1,2,3...

( )

k
m r i

i

i

L m r
f x x k

f x m r m r


 



  
    

  
  (20) 

Thus, the pdf of X is  

 
1

2
0

1

1
( ) , 1,2,3...

1

k
i m r

i

i

f x m r x k
m r

   



  
          

  (21) 

Substituting equation (21) in equation (18) the result is, respectively: 

 
1

2
0

00

1
1 , 1,2,3...

1

k
i m r

i

i

m r x dx k
m r

 


 
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  
          
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 
1

2
0

00

1
, 1, , 1,2,3...

1

k
j i jm r

i

i

x m r x dx x j k k
m r

 


 



  
           

  (23) 

The system given by equations (22)-(23) do not have generally an analytical solution 

but can be solved with numerical methods. 

Substitution of equation (21) in equation (9’) leads to maximum Varma-Tsallis 

entropy 
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 
1

1

2
, 0

10

1 1
1 , 1,2,3...

1

m r
k

i m r
m r i

i

VT m r x dx k
m r m r

 

 

 



    
        

       
  (24) 

Last equation shows that the VTm,r of the distribution probability of X depends only on 

the constraints, since the Lagrange multipliers themselves depend on the same 

constraints. 

 

5. APPLICATIONS 

 

The design of the hydraulic structures like spillways, dykes or diversions is based on 

the maximum discharges corresponding to standard values of the annual probability of 

exceedance (usually in the range 1% - 0,1%). The length of the registered data rarely 

exceeds 50 years, which means that the empirical probabilities of exceedance of the 

maximum annual discharges are in the range 2-98%. The main problem is the real 

probability of exceedance of the outliers is not known, meaning that the values of the 

statistical parameters are influenced by the empirical probability which is assigned to the 

extreme values. 

The method described above was used to determine the pdf for the maximum annual 

discharges of Prut River recorded at Radauti and the pdf of the data for the Somes River 

recorded at Satu Mare. The maximum annual discharges rates of the river Prut at Radauti 

gauge station between 1978 and 2015 (Fig.1) , , 1,38iX i   , and of the river Somes at 

Satu Mare gauge station between 1928 and 1988 (Fig 2) , , 1,64iX i   are used to obtain 

the probability distributions of discharges in order to be able to make predictions of 

floods.  

The measured discharge data are normalized  

, 1,38 , 1,64
max( ) min( )

i
i

i i

X
x i respectively i

X X
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FIG.1. Maximum annual discharges of the Prut River recorded at Radauti station 

 max=4240  ,   min=163  ,   = max− min=4077   
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FIG. 2.  Maximum annual discharges of the Somes River recorded at Satu Mare station 

 max=756  ,   min=134  ,   = max− min=622   

 

The empirical moments of these normalized records make out the first data set:  
1 2 30.25729 , 0.10104 , 0.05829x x x    

and for the second data set  
1 2 30.53851 , 0.34619 , 0.26046x x x    

The non-linear equations systems for Lagrange's multiplier, considering 

2 , 0.5, 2m r k  

 

are solved for each case using a numerical method.  

We obtain for the recorded discharges at Radauti 

0 1 22.579 , 2.671 , 1.104 .      

 
and for the recorded discharges at Satu Mare 

0 1 22.002 , 0.581 , 0.251 .         

Finally, the pdf for  2 , 0.5 , 2m r k  

 

is given by 
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and cumulative distribution function  
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A comparison between the maximum annual discharge quantiles corresponding to 

different mean return intervals (periods) that are estimated using the obtained probability 

distributions and other reference probability distributions recommended in Statistical 

Hydrology is presented in Table 1.  
 

Table 1. The maximum annual discharge quantiles corresponding to different mean return periods 
G

au
g
e 

st
at

io
n
 Quantiles Zα 

Probabilities α=0.90 α=0.95 α=0.98 α=0.99 α=0.995 

T (years) 10 20 50 100 200 

S
at

u
 M

ar
e,

  

S
o
m

es
  

Varma-Tsallis  555 620 681 711 730 

Log-Pearson type III   532 627 756 857 963 

Lognormal 3-parameter  534 633 768 875 987 

Generalized Extreme Value 530 627 760 866 979 

Gumbel Max 529 612 720 801 882 

R
ad

au
ti

, 
 

P
ru

t 

Varma-Tsallis 2138 2598 3127 3467 3742 

Log-Pearson type III 1953 2487 3272 3934 4662 

Lognormal 3-parameter  1924 2421 3135 3725 4361 

GEV (Generalized Extreme 

Value) 
1900 2477 3415 4292 5348 

Gumbel Max 2055 2488 3048 3468 3886 

 
5. CONCLUSIONS 

 

In this paper we introduced a generalization of Tsallis entropy, called Varma-Tsallis 

entropy, highlighted some properties and showed how it can be used to determine a 

probability density function of a random variable. The method presented here was used 

for the recorded maximum annual discharges of the Prut River and the Somes River. The 

results we obtained show that the method is reliable. 
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Abstract: A purpose of urban theory is to describe how cities develop based on the number of 

inhabitants. Many statistical models and laws of growing of cities have been suggested, such as 

Zipf’s, Mandelbrot-Zipf’s and Gibrat’s laws. This paper studies the urban agglomeration of 

Romania for the years between 2007-2017, using the q-log exponential distribution.   

 

Keywords: q-log exponential distribution, Romania's cities distribution, Tsallis statistics.  

 

1. INTRODUCTION 

 

Cities develop in different ways all around the world, depending on many social-

economic factors such as: economic growth of the area, economic activity, ethnic factors, 

infrastructure, and not only. Statisticians have studied the cities distribution for a long 

time, considering big cities, small cities or all together. Some laws of probability have 

Pareto tails for the lower and upper tails and different bodies: log-normal or Singh-

Maddala [1,2]. Other statistical models used in urban theory are the q-exponential, Pareto, 

log-normal [3,4], and more recently, the q-log distribution family [5].     

This paper studies the cities and municipalities agglomeration of Romania from 2007 

to 2017 using the q-log exponential distribution. We apply the Kolmogorov-Smirnov test 

and graphically show how well this probability law models the data.   

The paper is organized as follows. In Section 2, we present the q-log exponential 

distribution. Empirical analysis of Romania's cities population is performed in Section 3, 

while Section 4 concludes the paper.  

 

2. METHODOLOGY 

        
The q-log-location-scale exponential model was first introduced in 2018, as a 

submodel of q-log-location-scale distributions [5]. This class of distributions has been 

obtained by applying a q-logarithm Tsallis transformation to a baseline location-scale 

distribution. The q-logarithm and q-exponential functions are defined by  

    10,loglog =q>ifx,x=xT

q  and   10,
1

1
log

1






q>ifx,
q

x
=x

q
T

q  

while     1exp =ifq,x=xeq ,          011,111
1/1

>xq+ifq,xq+=xe
q

q 


, and 

      011,10 1/1  xq+ifq,=xe q

q  where q is a real parameter.  
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FIG. 1. Empirical density of city size ”Romania2016” and ”Romania2017” data  

 

     The q-log exponential distribution of parameters ρ > 0, θ > 0,  0,11q , and 12 >q  is 

obtained considering as baseline distribution the 1q -exponential model. These two 

statistical models are presented next.  

The 1q -exponential distribution is defined by the following cumulative distribution 

and density functions, respectively 

     1

1
1

q

q ρxe=xG  ,     ρC<x<>ρ>q,ρxρeq=xg qq
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1 0,00,                              (1) 

Where  

    0,11 1
1

 ifq,=ρCq
and

 
1

1

1
1

1
1

>ifq,
qρ

=ρCq


. 

The q-log exponential distribution (qLE) of parameters 1q , 2q , ρ, and θ is defined by 

the following distribution and density functions, respectively 
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where   01,0,1 21 >ρ>q,q  , while θ>0 is chosen as the minimum value of each dataset 

considered. 

 

3. EMPIRICAL ANALYSIS 
 

In this section, we discuss the analysis of cities’ size distribution in Romania between 

2007 and 2010. We perform the Kolmorogov-Smirnov test based on maximum likelihood 

estimation of parameters.  

3.1 Data 

Considering demographic data provided by INS we analyze the cities’ population data 

using q-log exponential distribution. Some characteristics of the datasets considered such 

as maximum and minimum values, number of observations, measures of skewness and 

kurtosis, standard deviation, and mean are displayed in Table 1. It can be observed that for 

each datasets, the measure of kurtosis is extremely high, suggesting a heavy-tail 

distribution. Also, the skewness is high for these datasets.  
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Because all datasets have almost the same values for these measures, we have only 

displayed the empirical densities for years 2016 and 2017. The empirical densities of 

datasets ”Romania2016”, and ”Romania2017” are displayed in Fig. 1.  
  

Table 1. Descriptive statistics of Romania cities population 

Year 
Nr. of 

obs. 
Mean SD Min Max Skewness Kurtosis 

2007 319 40,161.72  

 

131,960.5  

 

1,811 2,156,978  

 

13.20  

 

205.09  

 2008 319 40,051.41  131,970.5  

 

1,784  2,158,816  

 

13.23  

 

205.78  

 2009 319 40,011.10 132,033.1  1,750  
 

2,160,627  
 

13.24  
 

206.11  
 2010 319 39,960.93  

 

132,077.1  

 

1,732  2,162,037  

 

13.26  

 

206.41  

 2011 319 39,816.94  

 

131,755.7  1,710  2,157,282  

 

13.27  

 

206.63  

 2012 319 39,671.51  

 

131,410.2  1,704  2,151,758  

 

13.27  

 

206.70  

 2013 319 39,589.31  

 

130,890.8  

 

1,695  2,140,816  

 

13.23  

 

205.72  

 2014 319 39,428.26  

 

129,371.9  

 

1,674  2,110,752  

 

13.14  

 

203.55  

 2015 319 39,317.36  

 

128,847.3  

 

1,677  2,100,519  

 

13.11  

 

202.87  

 2016 320 39,243.34  

 

129,026.9  

 

1,684 

 

2,107,399  

 

13.15  

 

203.86  

 2017 320 39,136.24  

 

128,783.3  

 

1,663  

 

2,103,251  

 

13.14  

 

203.81  

  

3.2 Parameter estimation and discussion 

In order to assess if the q-log exponential model is appropriate to model the datasets 

considered, we utilize the Kolmogorov-Smirnov (KS) test. Also, we discuss the maximum 

likelihood estimation of the parameters. Distributions having few parameters are well 

fitted to data by maximum likelihood method. Hence, the maximum likelihood method 

applied for qLE model is described next. 

Let nx,,x,x ...21  be a random sample of size n from  θqqρ,qLE 2,1,  distribution of 

parameters ρ > 0, θ > 0,  0,11q  and 12 >q . The log-likelihood function for the vector 

of parameters  Tθqqρ,=δ 2,1,  can be expressed as 
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The log-likelihood can be maximized by solving the nonlinear likelihood equations 

obtained by differentiating the equation above. However, the maximum likelihood 

estimator of θ is very simple 

ixmin   

In other words, we choose the parameter θ to be equal to the smallest value of the 

dataset considered for analysis. The components of the score vector U(δ) are 
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Solving the nonlinear likelihood equations above requires the use of numerical 

Methods that admit restrictions, such as an extended Nelder-Mead method [6]. 

Table 2 displays the maximum likelihood estimates of Romania’s cities population. 

The standard errors were calculated by considering 500 bootstrapped samples, while the 

software used is R. All parameter estimates are highly significant as indicated by the low 

standard errors. The MLE of ρ̂  ranges from 0.0284 to 0.0320, of 1̂q  ranges from 0.20417 

to 0.21728, while of 2q̂  ranges from 4.58516 to 4.82080. The smallest city in Romania for 

year 2007 had a population of 1,811 inhabitants, while in 2017 this value decreased to 

1,663 inhabitants. The estimate of parameter θ is taken as the minimum value of each 

dataset. 
 

Table 2. Parameter estimates of q-log exponential distribution of Romania’s cities population 

 Parameter estimators (standard errors) 

Year ρ  1̂q  2q̂  θ  

2007 0.0320 (0.6836)   0.20417 (0.02952) 4.82080 (0.54629 ) 1,811  

2008 0.0308 (0.65560) 0.20610 (0.03013) 4.79259(0.54740 ) 1,784  

2009 0.0291 (0.68319) 0.20745 (0.03194) 4.76868 (0.57177) 1,750  

2010 0.0288 (0.69591) 0.20941 (0.03049) 4.73258 (0.52923) 1732 

2011 0.0284 (0.69357) 0.21164 (0.03059) 4.69677 (0.52232) 1,710  

2012 0.0288 (0.68885) 0.21293 (0.03277) 4.67398 (0.54680) 1,704  

2013 0.0292 (0.69707) 0.21453 (0.03077) 4.64519 (0.51047) 1,695  

2014 0.0292 (0.67057) 0.21650 (0.03288) 4.60674 (0.51194) 1,674  

2015 0.0304 (0.69024) 0.21687 (0.03106) 4.59454 (0.49957) 1,677  

2016 0.0310 (0.67105) 0.21648 (0.03209) 4.60079 (0.54209) 1,684  

2017 0.0304 (0.65839) 0.21728 (0.03227) 4.58516 (0.54138) 1,663  

 

To predict city sizes x̂ , we substituteθ

ρq,,•1̂

, and 2q̂  into the q-log exponential CDF and 

solve for  

 
   

The log of actual and predicted values of x can be plotted against the log rank to 

obtain the rank-size plot. 
 

3.3 Graphical analysis 

In this section, we graphically analyze the modelling of Romania’s cities population. 

We perform the Kolmogorov- Smirnov test and display the rank-size plots of both data 

and predicted values. The Kolmogorov-Smirnov (KS) test considers the goodness-of-fit 

by analyzing the supremum of the difference between the theoretical and empirical CDF. 

Table 3 reports the KS test values of q-log exponential distribution based on the selected 

data.  A p-value of the KS test close to 1 indicates extreme evidence for the data to have 

come from the distribution fitted. 
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        Table 3. Kolmogorov-Smirnov test results  

Year KS p-value 

2007 0.02612  0.981  

2008 0.02646  0.978  

2009 0.02631  0.979  

2010 0.02653  0.978  

2011 0.02692  0.974  

2012 0.02694  0.974  

2013 0.02719  0.972  

2014 0.02727  0.971  

2015 0.02676  0.976  

2016 0.02622  0.980  

2017 0.02698  0.973  

 

CONCLUSIONS 

 

     Romania’s cities population can be very well modelled by means of q-log 

exponential distributions for each year.  Since a large portion of the population of 

Romania (56.4%) is living in cities, the economic activities in this part of the country are 

important to the national economic growth. At present, in 2017, the capital, Bucharest, is 

the most developed city in the country, having more than 2 millions inhabitants, while the 

second largest city Iasi, has 368,866 inhabitants. This fact suggests a large gape in 

development between the capital and the rest of the cities. 

 

 

FIG. 2. Empirical and theoretical cumulative distribution of city size “Romania2016” and “Romania2017” 

data  
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FIG. 3. Rank-size plots for 2016 and 2017 
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Abstract: This article examines the differences between the extracted cyclical components of 

some macro-economic time series using three detrending methods: HP (Hodrick-Prescott), BK 

(Baxter-King) and CF (Christiano-Fitzgerald). We use different approaches to compare the 

differences. A standard examination of the cyclical component is done. We also use a frequency 
domain approach and examine the sample spectra for each cycle. Furthermore, impulse 

responses and the correlation between the cyclical components extracted by each detrending 

method are studied. Our conclusion is that for quarterly data HP, BK and CF produce similar 
cycles. However, when we considered annual data the HP method gives us significant differences 

from the BK and CF methods. 

 
Keywords: Hodrick-Prescott filter, BK (Baxter-King) filter, CF (Christiano-Fitzgerald) filter, 

DSP (Digital Signal Processing), macro-economy. 

 

1. INTRODUCTION 

 

Correctly estimating business cycles is important for macro-economic research. 

Several methods of extracting business cycles from some given time series were 

developed, but none of these lead to different results one to another. This is the reason 

why the authors from [22], investigate these three de-trending tools: HP (Hodrick-

Prescott), BK (Baxter-King) and CF (Christiano-Fitzgerald). All these three are also 

considered to be filters, because their aim is to separate the trend component from the 

cyclical component. The analyses carried out in this article include a basic analysis of the 

cyclical component, a frequency domain examination of the spectral densities of each 

filter, also the correlation between the cyclical components found by the detrending 

methods and the impulse responses are also studied. 

Also, the purpose of this research article is to determine, in future researches, what 

other types of signals, besides the time series presented here, would be suitable to adapt 

these filters (HP, BK or CF) to extract important observations from input data. By 

adapting these types of filters to other datasets we mean to modify not only the constants 

involved in their own definition, but also the mathematical definitions or equations that 

describe them. 

From the conclusions obtained in [22], we are now sure that for one quarter of the 

data, the HP, BK and CF filters extract similar cycles and this is an very important result. 

The second important result that could be used for other datasets concerns the 

behavior of the HP filter for annual data, which differs from the other two band pass 

filters (BK and CF).  
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2. MAIN RESULTS CONCERNING THE HODRICK-PRESOTT FILTER, THE 

BAXTER-KING FILTER, THE CHRISTIANO-FITZGERALD FILTER 

 

2.1 The Hodrick-Prescott Filter  

For this section we follow the line from [21]. 

The Hodrick-Prescott (HP) filter is a standard tool in macroeconomics for 

differentiating the long trend in a data series from short run fluctuations. It is also a 

smoothing method whose aim is to obtain a smooth component from the trend. Let’s 

assume we have the following time series: 

  

The HP filter smoothed the series  as defined and described in 

economics by Hodrick and Prescott (1980, 1997) ([3] and [4]) results from minimizing, 

over all ,  

 

 
 

where  denotes the sample size,  is the nonnegative smoothing parameter so that for 

quarterly of the data is often chosen to be equal to 1600, and  is the 

data series to be smoothed. 

In [5] a similar filtering technique was introduced [1]. Usually,  are referred to as 

“trend components”, while  it is named “cyclical component”. 

It was mentioned in [1] that there exists a minimizer, which is unique, to the 

minimization problem for equation (1), so that, for a known positive definite ( ) 

matrix , letting  denote the ( ) identity matrix,  and  

.  

So the trend component  and the cyclical component  are both weighted 

averages of , so therefore we will re-write: 

 

 
 

For notational convenience, the dependence of  and  on  is suppressed. One 

of the purposes set in [1] is to find a new representation for  and see immediate 

consequences of this representation. This approach eliminates the inability to discover a 

simple expression for the elements of , which prevented other researchers 

from finding a simple expression for the weights that are implicit for the HP filter (for 

more, see [1]).  

We notice first of all, that: , 

so this means that  for . Also, we have 

that:  and therefore we have that:  for . 

Authors in [1] obtained that this way, a quadratic trend is not absorbed in  . 

They also mentioned that previous literature on the HP filter is only based on the 

observation that the first order condition for  is: 
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Let denote the forward operator and the backward operator, then according to [1], 

this simplifies to the following relation: 

 
which can also be re-written as: 

 
Papers that, according to [1], that analyze the HP filter based on the first order 

condition are for example [6], [7], [8], [9] and [10]. 

 A high value of  will give a more linear trend and will allow for increased variation 

in the cyclical component, [22]. For , the trend component is, obviously, equivalent 

to the actual time series, . 

The determinant key for the minimization problem  is the value of . 

 

2.2 The Baxter-King filter 

For following we consider the results from [22]. 

BK filter is decomposing a time series, let’s say , into three different components: 

trend, cycle and the irregular component. 

  

   

 

where  is the trend component,  is the cyclical component,  is the irregular 

component, [15]. 

   As a result, a new time series  is obtained when we apply a finite symmetric 

moving average. 

   So, we define the following symmetric moving average: 

 where  are fixed constants or let’s say weights and  

the maximum lag length. In order to extract the cyclical components from the above time 

series, BK uses weights that will add up to zero, meaning: .That will be the 

trend elimination property, [15]. These weights that add up to zero and the moving 

average have some good elimination properties that generate a so called stationary time 

series. 

    This is an very important fact, because economic time series have the tendency to 

be non-stationary, [15]. 

     Authors in [15] derive this filter through the frequency-domain perspective. The 

point from where to start with the BK filter is, according to [22], the Cramer 

representation theorem, which states the following: 

 

  

 

under some suitable conditions. In this representation, the time series is now written as 

the integral of the random periodic components, , and where  is expressed in 

radians. According to [22], if we apply Cramer Theorem to equation (7), we have the 

following: 

 

 
 

where   it is the frequency response function for this filter. 
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Another interpretation, according to [22] would be: how much  responds to  at a 

given frequency  with respect to the weight , also to the random and periodic 

component . An important observation for the BK filter would be that  has the 

value 0 at frequency 0, meaning: .  

The cyclical component is defined or extracted as follows: 

 
where the weights  can found by applying the inverse Fourier transform to the 

frequency response function, [12]. 

 

  

 

Considering the definition from [22],  has to be between  and  .The construction 

of BK filter is made from two low pass filters and is having two frequency bands,  and  

.Because of this, we define two frequency response functions: , for 

 (zero otherwise), , for . To obtain the weights , 

we get  from  and we will have the desired frequency response function for  

 or  and zero otherwise.The weights  can then be obtained 

from equation . 

 

2.3 The Christiano and Fitzgerald filter 

The Christiano and Fitzgerald filter (CF), like the BK filter, is the approximation of an 

ideal band pass filter. Assuming a symmetric moving average is not the case here 

[16].The cyclical component, according to [22], is given by: 

 

 

 

 

For t=3,4,…,T-2,  where: 

 

 

 
 

and pt and ph are defined like in [16].So, cycles that are longer than pt but shorter than ph 

are defined to be the actual cyclical component ct. The CF filter is not symmetric, [17].  
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This is in contrast with BK filter, which is considered to be symmetric. CF is consistent, 

when compared to BK filter, because it converges to an ideal band pass filter when the 

sample size T is increased, [22], [17]. 

 

3. THE IMPULSE RESPONSE FUNCTION 
 

The Impulse Response Function (IRF) is in general obtained from Variance 

Autoregressive model (VAR). Consider the following VAR (1) systems with these two 

equations: 

 

 
where  and  appear as is [22].This shows that if there is a shock in , there will also 

be an effect in . 

   Let’s suppose that at a given time  there is a shock to  by one standard deviation, 

 , and  is not shocked. Furthermore, suppose that for period:  we 

don’t have any shock in either  or  [20]. This response to the shock will then be: 

 Time  (when the shock occurs): 

The effect on  is  and on  we have no effect. 

 Time : 

The effect on  is  and the effect on  is  

 Time : 

The effect on  is and the effect on  is  

 

In future periods, , the effect from the shock will be different from the values of 

. 

The coefficients  are obtained from the following VAR(k) system, with two 

equations, [22]: 

, 

, 

 

where:  is a constant ( ) ,  is obviously the original time series and  is the 

cyclical component for the time series. Above,  represents the number of lags and  is 

a stochastic error term ( ). 

In order to decide about the number of lags in this the model, we proceeded as in [22]. 

     

4. CONCLUSIONS 

 

This survey article reveals the new mathematically rigorous results and properties of 

the HP filter, BK filter, CF filter obtained by the authors in [22] and also establishes new 

lines of research in this field, having set for the future clear objectives concerning the 

kind of results that are to be obtained. 

Future work will include possible applications of these filters in DSP, by calibrating 

the constants in each filter after replacing the GDP, consumption, investment and 

inflation test datasets with digitized samples from complex valued signals, reconstruct the 

impulse response functions for each filter and after plot the spectral density for each filter 

in the detrended dataset. 
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