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Abstract: An analysis of honeycomb structures mechanical properties is presented. The honeycomb 
sandwich construction is one of the structural engineering developed and used in aerospace industry. The 
honeycomb sandwich structures provide the benefits over conventional materials: very low weight, high 
stiffness, durability and production cost savings. The finite element method is applied for the 
determination of the elastic characteristics of the sandwich structure with honeycomb core, in terms of 
constraints, loads and displacements. 
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1. INTRODUCTION 
 

The most important part of the aeronautical 
structures, the helicopter main rotor blade, can 
use exclusively composite materials. The most 
frequent solution is that of the sandwich 
structure with a core made of a very light 
material, in which the external surfaces have 
high strength limit. One of the most frequently 
used structures for the core is the honeycomb 
structure. Therefore, this paper present the 
applications of the finite element method for 
the determination of the elastic characteristics 
of the sandwich structure made of Dural 
boards and honeycomb core. 

In figure 1, a honeycomb core is presented, 
the materials used being aluminum, paper or 
carbon fiber, depending on the pressures to 
which the sandwich structure is subjected. 

 
 
 
 
 
 

Fig. 1 Honeycomb structure 
 

2. ANALYSIS 
 

2.1 Honeycomb structure characteristics. 
The honeycomb structure will be considered 

an orthotropic material, which requires the 
elastic constants: Young’s modulus, xE , in x  

direction; yE , in y  direction, zE , in z  

direction; j,i , Poisson’s ratio ( z,y,xj,i  ), 

and shearing modulus xyG , yzG , xzG . 

Hooke’s law generalized and detailed for 
an orthotropic material in relation with its axes 
has the following expression: 
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The following conditions are met: 
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 2.2 Analysis steps. The steps for finite 

element analysis are: identification of the 
representative unit cell for the whole 
honeycomb structure, meshing and applying 
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the boundary conditions, computation and 
processing the results.  

The cell of the structure is a hexagonal cell 
and with this hexagonal cell it is possible to 
describe the entire honeycomb core, using the 
periodicity of the structure.  

For the finite elements model, it is 
developed only one portion of the hexagonal 
cell unit of the honeycomb structure. By 
multiplying this portion in relation with Ox  
and Oy  axes, one may notice that a real 
honeycomb structure is obtained. This portion 
will then be replaced in the final model by a 
solid element having the same elastic and 
weight characteristics. 

A tri-dimensional element SOLID, 
presented in figure 2, is used in problems of 
structural analysis or thermal transfer. For the 
structural analysis, each node has three 
degrees of liberty, translations. 

 

 
 

Fig. 2 SOLID element with 20 nodes 
 

Mention should be made that the two types 
of elements previously presented are not 
perfectly compatible due to the different 
degrees of liberty of the nodes, that is, 
rotational degrees of liberty. The COSMOS/M 
program allows for the continuity control 
between the solid elements such as TETRA5, 
TETRA10 and SOLID and the diaphragm ones 
(SHELL). Some restrictions are necessary in 
terms of coupling and connecting these 
incompatible elements by using an indicator 
for rigid links. This allows for an articulate 
link (HINGE) between the solid and 
diaphragm elements that has to be stabilized 
by applying sufficient frontier conditions. 

The developed analysis for the 
determination of the Young’s modulus and 
Poisson’s ratio, are the traction along the X  
axis, along the Y  axis and along the Z  axis. 
Once the structure is meshed, boundary 

conditions are applied on the structure in terms 
of constraints, loads and displacements. 

Figure 3 presents the geometrical 
characteristics of the unit cell portion 
developed from the hexagonal honeycomb 
structure. 

 

 
 

Fig. 3 Geometrical characteristics of the developed 
honeycomb structure sample 

 
2.3 Axial load. The boundary conditions 

along the axis are presented in table 1, and 
figure 4.  

 

Table 1 Boundary conditions 

 
Displacement 

Node 

1 2 3 4 5 6 7 8 

T
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ct
io

n 
al

on
g 

X
 a

xi
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Along  X axis 0 / 0 / / 0.1 / 0.1 

Along  Y axis 0 0 0 0 0 0 0 0 

Along  Z axis 0 0 0 0 / / / / 

T
ra

ct
io
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Y
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Along  X axis 0 / 0 / / 0 / 0 

Along  Y axis 0 0 0 0 0.05 0.05 0.05 0.05

Along  Z axis 0 0 / / 0 0 / / 

T
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io

n 
al

on
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Z
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Along  X axis 0 / 0 / / 0.1 / 0.1 

Along  Y axis 0 0 0 0 0 0 0 0 

Along  Z axis 0 0 0 0 / / / / 
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Fig. 4 Boundary conditions 
2.4 Results. The obtained results are 

presented in table 2, whereas the 

Traction along X axis Traction along Y axis 

Traction along Z axis 



Technical Sciences and Applied Mathematics 

                                                                                                                                                27

displacements along the axis are represented in 
figure 5. 

 

 Table 2 Results��

Results 
Traction 

along 
X axis 

Traction 
along 
Y axis 

Traction 
along 
Z axis 

Normal force along 
X �axis, Nx (N) 

267.8  222.3 0 

Normal force along 
Y �axis, Ny (N) 

446.5 395.2 0 

Normal force along 
Z�axis, Nz (N) 

0 0 219.81 

Displacement along 
X axis, x (mm) 

0.1 0 -0.021033 

Displacement along 
Y axis, y (mm) 

0 0.05 -0.012151 

Displacement along 
Z axis, z (mm) 

-0.05066 -0.05335 0.2 
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Fig. 5 Displacements field 
               

Based on these results, one can calculate: 
Traction along X axis  
- normal stress on x  axis: 

yOzxx AN                         (4) 

  MPa985.3324.198.267x   
- normal stress on y  axis: 

xOzyy AN                         (5) 

  MPa835.364.195.446y   

- normal stress on z  axis: 

xOyzz AN              (6) 

MPa0z   
- strain on x  axis: 

xxx l                         (7) 
2

x 10666.161.0   
- strain on y  axis: 

yyy l                         (8) 

0y   

- strain on z  axis: 

zzz l                          (9) 

2
z 102611.04.1905066.0   

 

Substituting these results in equations (1) 
we obtain the following system of equations: 

 835.3
E

985.3
E

1
0

y

yx

x


  

835.3
E

1
985.3

E
10666.1

yx

xy2 


    (10) 

835.3
E

985.3
E

102611.0
y

yz

x

xz2 



   

Traction along Y axis  
- normal stress on x  axis: 

  MPa308.3324.193.222x   
- normal stress on y  axis: 

  MPa386.364.192.394y   

- normal stress on z  axis: 
 MPa0z   

- strain on x  axis: 
 0x   

- strain on y  axis: 

 2
y 104435.13205.0   

- strain on z  axis: 

 2
z 10275.04.1905335.0   

 

Substituting these results in equations (1) 
we obtain the following system of equations: 

386.3
E

308.3
E

1
0

y

yx

x
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386.3
E

1
308.3

E
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386.3
E

308.3
E

10275.2
y

yz

x

xz2 



   

Traction along Z axis  
- normal stress on x  axis: 

MPa0x   
- normal stress on y  axis: 

MPa0y   

- normal stress on z  axis: 

     32681.219z   

     MPa576.10z   
- strain on x  axis: 

2
x 103505.06021033.0   

Traction along X axis Traction along Y axis 

Traction along Z axis 
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- strain on y  axis: 
2

y 103507.032012151.0   

- strain on z  axis: 

 2
z 100309.14.192.0   

Substituting these results in equations (1) 
we obtain the following system of equations: 

576.10
E

103505.0
z

zx2 
   

576.10
E

103507.0
z

zy2 
           (12)       

576.10
E

1
100309.1

z

2      

Solving the systems equations (10), (11), 
and (12), and considering equations (3), get 
the following results for longitudinal modulus 
of elasticity and Poisson’s ratio: 

Pa28.14Ex    

MPa06.13Ey    

MPa92.1043Ez   

067.0Exxy     

068.0Eyyx   
4

yyz 1045.3E    

4
zzy 1031.3E   

4
xxz 1028.3E    

4
zzx 1031.3E   

 
3. CONCLUSIONS 

   
The finite elements method is the most 

effective method of numeric calculus in 
structure analysis, regardless of their type and 
complexity. By applying the constitutive law 
of an orthotropic material, only for the 

reference orthotropy axes, the sample 
mechanical characteristics have been 
determined. Based on this work, an equivalent 
model will be developed, in a static and 
dynamic calculus of a sandwich structure. This 
method eliminates the disadvantages of 
analytical methods, and is successfully used to 
solve calculus problems related to aeronautical 
structures. 
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