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1. INTRODUCTION 
 

Problems as the convergence’s sequence of 
random variables and the links between certain 
types of convergence are the subject of a vast 
literature. It is known that each type of 
convergence is used in certain situations as 
well as Brownian motion has a large domain 
of applicability in the real world.  

Starting from these considerations, we 
stopped in this article on the concepts of weak 
convergence of probability and convergence in 
distribution of random variables, notions 
underpinning the result of a fundamental 
theory of probability as the Invariance 
Principle. 
 

2. CONVERGENCE IN DISTRIBUTION 
OF RANDOM VARIABLES 

 
Furthermore, we introduce the function of 

Kolmogorov (Orman, 2003: 73-74) that uses 
in the definition of convergence in distribution 
of random variables.  

Let ( ), K, PΩ  be -a probability space, F – a 
set and , a function. If we 
note

f : FΩ→
( ) ( )fK F , the following set: 

( ) ( ) ( ){ }f 1K F A F | f A K−= ⊂ ∈           (1)                                                                                                          

Then, the set ( ) ( )fK F  is a new σ-field. 

For ( ) ( ) ( )fA K F∀ ∈ , one can define a 
single function: 

( ) ( ) ( )( )f 1P A P f A−=                               (2) 

We see now, that the function ( ) ( )fP A , 
defined by that relationship (2) is a probability 
on σ-field ( ) ( )fK F , and thus, the triplet 

( ) ( ) ( )( )fF,K F ,P f  becomes a probability space. 

Indeed, the relationship (2) indicates: 
( ) ( ) ( ) ( ) ( )f fP A 0,  A K F≥ ∀ ∈                  (3) 
( ) ( ) ( )( ) ( )f 1P A P f F P− 1= = Ω =          (4)                          

because P is a probability on the σ- field K. 
We check now the third axiom of 

probability, the countable additivity: 
If ( ) ( ) ( )f

α α I
A K

∈
⊂ F

Ø
 is a family of events, 

with α' α''A A =I , if  andα ' α ''≠ α ',α '' I∈ , 
then: 

 

( )

( ) ( )(
( ) ( )

f 1
α α

α I α I

1 1
α α

α Iα I

f
α

α I

P A P f A

P f A P f A

P A

−

∈ ∈

− −

∈∈

∈

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ )= = =⎜ ⎟
⎝ ⎠

=

∑

∑

U U

U       (5) 

          

We used such equality to demonstrate that 
the   relationship   ,   forα' ''A Aα α =I Ø ' α ''≠ , 

43



 Some Results on Convergence in Distribution of Random Variables 

α ',α '' I∈  then: 
( ) ( ) ( )
( )

1 1 1
α ' α '' α ' α ''

1

f A f A f A A

f Ø Ø,

− − −

−

= =

=

I I
 

that means  and (1
α 'f A−

 

) ( )1
α ''f A−  are 

incompatible. 
From (3), (4) and (5) it results that 

( ) ( ) ( ){ }fF,K F ,P f

)

)

 is a probability space. 
 

Definition 1  
If  is a probability space, the 

function defined by relationship (2) is called 
the function of Kolmogorov  

( , K, PΩ

•
Furthermore, we introduce the concepts as 

“the weak convergence” of probabilities and 
“the convergence in distribution” of random 
variables that will be used in two applications 
(Problem 1 and Problem 2 - Section 3) that we 
tried to prove (Karatzas, 2005: 60-64). 

             
Definition 2 

Let  be a metric space, with Borelσ -

field . Let {
(S,ρ

( )B S }n n 1
P

≥
 be a sequence of 

probabilities on ( )( )S,B S , and let P be another 
measure on this space.  

We say that { }n n 1
P

≥
converges weakly to P 

and write w
nP P⎯⎯→ , if and only if: 

 

( ) ( ) ( ) ( )nn
S S

lim f s dP s f s dP s
→∞

=∫ ∫               (6) 
                                                             

for every bounded, continuous real-valued 
function f, on S•  
 
Definition3 

Let ({ )}n n n n 1
Ω ,K ,P

≥
 be a sequence of 

probability spaces and on each of them 
consider a random variable , with values in 
the metric space 

nX
( )S,ρ . Let (  be 

another probability space, on which a random 
variable X, with values in (  is given. 

)

)

Ω,K,P

S,ρ

We say that { }n n 1
X

≥
 converges to X in 

distribution and write , if the sequence 

of measures {
nX →
D

It notes that is equivalent with nX X→
D

( ) ( )n nn
lim E f X Ef X
→∞

= , for every bounded 

continuous real-valued function f, on S, where 
E, and En denote expectations with respect to 
Pn and P. 

The most important example of distribution 
convergence is the Central Limit Theorem. 
Lévy formulates and solved the problem: find 
the family of all possible limit laws of normed 
sums of independent and identically 
distributed random variables. The answer is 
given by The Central Theorem: “If it exists a 
series{ }n n 1

X
≥

, of independent random 
variables, identically distributed, with the 
mean 0 and dispersion , then the series: 2σ

 

n

n k
k=1

1S X ,
σ n

n 1= ≥∑                         (7) 
 

converges in distribution to a normal random 
variable”. 

An extension of the Central Limit Theorem 
is The Invariance Principle. This result leads 
to the property that a sequence of normalized 
random trajectories will converge in 
distribution to the Brownian motion. 

In the following section, we introduce the 
definition of the real Brownian motion and 
The Invariance Principle, called The Principle 
of Donsker (1951) as one of the notable results 
in the intervening notions outlined above 
(Karatzas, 2005: 48, 66-70).  
 

3. THE INVARIANCE PRINCIPLE 
 

We consider X, a continuous process on a 
probability space ( )Ω,K,P . Forω Ω∈ , the 

function ( )tt X ω→  is part of the set [ )C 0,∞  

and it is denoted with . We can say in 
this case, that the random function 

( )X ω

[ )X : C 0,Ω→ ∞  is  measurable. 

Thus, if 

[ )(K | β C 0,∞ )
( ){ }n

n 1
X

≥
is a sequence of continuous 

processes (each ( )nX  defined on a separate 
probability space ( )n n nΩ ,K ,P ), the question 

when ? ( )nX X→
D

X

}-1
n n n 1

P X
≥

converges weakly to 

the measure  -1PX •
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Also, it raises the question of convergence 
of sequence of finite dimensional distributions 

( ){ }n

n 1
X

≥
, to another distribution X, namely, 

under what conditions the relationship exists: 
( ) ( )( ) ( )1 d 1

n n
t t t tX ,...,X X ,...,X→

D

d
?   

 
Definition 4 

The standard Brownian motion     
is a continuous, adapted process 

             

{ }t tB B ,K | 0 t= ≤ < ∞  where are random 
variables and - subfield of  defined on 
the probability space 

tB

tK K

( )Ω,K,P  with the 
following properties: 

i) ; 0B 0=
ii) The increases of are independent,    

i.e for any finite number of times 
, the random variables 

, B - ,..., , are independent; 

tB

1 2 n0 t <t <...<t≤ < ∞

t tB
1

(
2 1t tB -B

3 2 n n-t tB -B

iii) )  0 s t T∀ ≤ < < s, the growth  is 
normally distributed, with mean 0 and 
dispersion ; 

tB -B

t-s
iv) ( )tB ω  is a continuous function of t, 

( )  ω Ω∀ ∈ •  
We construct now, a sequence of 

normalized random walks that will converge in 
distribution to a process that is the Brownian 
motion. 

It considers a sequence of independent 
random variables { }j j 1

ξ
≥

 identically 

distributed, with an average 0 and dispersion 
, , with the sequence of partial 

sums , , . With these 

initial data, we can construct a Brownian 
motion as following:  

2σ 20 σ< < ∞

0S 0=
k

k k
j=1

S ξ=∑ k 1≥

We consider now { }Y Y | t 0t= ≥ , the 
continuous-time process obtained from the 
sequence { }k k 0

S
≥

 by linear interpolation: 

[ ] [ ]( ) [ ]t t 1Y S t- t ξt += + t 0≥,                     (8) 
                                                    

where [ ]t Z∈ ,[ ] { }t max k Z,k t= ∈ ≤ . If we 
make the graphic in relation both to time and 

space, we obtain from Y, a sequence of 
processes ( ){ }nX : 

( )n
t ntY1X

σ n
= t 0≥,                                 (9)                         

It is noted that if ks =
n

 and k+1t =
n

, then 

the growth ( ) ( )n n
t s k

1X -X = ξ
σ n +1

)k

 is independent 

of  and in addition, 
( ) (
nX

s 1F =σ ξ ,...,ξ ( ) ( )n n
t sX - X  

has zero mean and variance . From the 
previously notes it results that 

t-s
( ){ }n
tX | t 0≥  is 

approximately a Brownian motion. 
It is known that in the case of the random 

variables  are not necessarily normal, but 
using the Central Limit Theorem it results that 
the limiting distributions of the increments of 

jξ

( )nX  are normal. 
 

Theorem 1 
If ( ){ }n

t n
X , is the sequence of processes 

defined by (9) and 1 d0 t <...<t≤ < ∞ , then:                         
( ) ( )( ) ( )1 d 1

n n
t t tX ,...,X B ,...,B→

D

dt
, , where n →∞

{ }B
t tB ,K | t 0≥ , is a standard, one-dimensional 

Brownian motion•  
                                                                                                                                                                                               

Theorem 2 (The Invariance Principle- 
Donsker – 1951) 

Let ( )Ω,K,P be a probability space, on 

which we consider, a sequence { }j j 1
ξ

≥
 of 

independent, identically distributed random 
variables with mean zero and finite variance 

.  2σ 0>
Let us define for every , the      

process 
n 1≥

( ) ( ){ }n n
tX X | t 0= ≥ , by (9) and this 

considers , the measure induced by nP ( )nX     

on [ ) [ )( )( )C 0, ,B C 0,∞ ∞ . Then { }n n 1
P

≥
 

converges weakly to a measure , under 
which the coordinate mapping process  

 on 

*P

( ) ( )tW ω ω t
def

= [ )C 0,∞  is a standard, one-
dimensional Brownian motion•  
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4. APPLICATIONS 
 

Furthermore, we solve two problems 
(Problem 4.5 and Problem 4.12 - Karatzas, 
2005: 61, 64). For the second, we give a 
generalization with [ )S C 0,= ∞ .  
 

Problem 1 
Let us consider a sequence of random 

variables { }n n 1
X

≥
, with values in the metric 

space , which converges in distribution 

to random variable X. If  is another 
metric space and 

( 1 1S ,ρ

 

)
)

2

( 2 2S ,ρ

1:S Sϕ →   continue, then 
the sequence { } (n nn 1

Y , Y Xϕ
≥

= )n  converges 

in distribution to random variable ( )Y Xϕ= . 
Demonstration: 

If ( )n n
X X⎯⎯→D , then, according to the 

earlier note: 
( ) ( )n nn

lim E f X Ef X=                           (10)                                                           

( ) f∀ - bounded, continuous and real-valued 
function  f  on ;  is a metric space where 
the random variables  take values. 

1S 1S

nX
If g is a bounded and real-valued function 

on metric space  and 2S 1:S S2ϕ → , then 
-bounded, continuous and real-

valued function. For 
1g f :S R→o

f g ϕ= o , relationship  
(10) becomes:    

( )( ) ( )( )n nn
lim E g X E g Xϕ ϕ=o o ⇔  

( )( ) ( )( )n nn
lim E g X Eg Xϕ ϕ= ⇔  

( ) (nX X
n

ϕ ϕ⎯⎯→⎡ ⎤⎣ ⎦
D )   

that is what needed to be demonstrated•  
 

Definition 5 
a) Let  be a metric space and  a 

family of probabilities on . We say 
that  is relatively compact, if every sequence 
of elements of  contains a weakly 
convergent subsequence. We say that  is 
tight if  there exists a compact set  

 such as 

(S,ρ)
)

π

( )(S,B S
π

π
π

( )ε 0∀ >

K S⊆ ( )P K 1 ε≥ −  ( )P π∀ ∈ . 

b) If { }α α A
X

∈
 is a family of random 

variables, each one defined on a probability 

space ( )α α αΩ ,K ,P  and taking values in S, we 
say that this family is relatively compact, if the 
induced family { }-1

α α α A
P X

∈
 has this property •  

Furthermore, we propose to explore the 
convergence of sequence by type: 

 

                                          (11) n n
S n 1

f dP
≥

⎛ ⎞
⎜ ⎟
⎝ ⎠
∫

                                     

where ( )n n 1
P

≥
 is a weak convergent sequence 

of probabilities defined on Borel σ -field 
( )B S , S being a metric space. The next 

enunciation indicates a sufficient condition by 
convergence of such a full sequence. We 
consider that the solution of the Problem 2 is 
standard, but interesting. 
 

Problem 2 
Let ( )( )S,B S  be a measurable space 

associated with a metric space ( )S,ρ , a 

sequence of probabilities ( )  and a 
probability P. Also, let f : ,  a 
sequence of functions uniformly bounded and 
converges uniformly on compacts to a 
continuous function f , f : .  

n n 1
P

≥

S Rn → n 1≥

S R→
If the sequence of probabilities ( )n n 1

P
≥

 

converges weakly to P, then  converges 
uniformly on compacts to a continuous 
function f, and if the family of probabilities 

( )n n 1
f

≥

nπ {P ,n 1} {P}= ≥ U  is relatively compact, then 

the following holds: . n nn
S S

lim f dP fdP
→∞

=∫ ∫
Demonstration:          

According to the hypothesis of limitation 
uniform, there exists a constant  such that a 0>

( ) ( )n| f (ω) | a, ω S, n 1≤ ∀ ∈ ∀ ≥  and also: 
 

( )| f(ω) | a, ω S.≤ ∀ ∈                                (12) 
 

Let  be fixed. ε 0>
When the family  is 

alleged relatively compact, there exists a 
compact set , such as: 

nπ {P ,n 1} {P}= ≥ U

K S⊂

( )n
εP (K) 1 , n 1.

6a
> − ∀ ≥                       (13)                  

Therefore ( )n
εP (S-K) , n 1.

6a
< ∀ ≥  
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 The uniformly convergence of ( )  to 
function f on the compact K, ensures the 
existence of a rank , that is natural such 
that: 

n n 1
f

≥

1N

It results n
n n

S S

f dP fdP→∞⎯⎯⎯→∫ ∫ •  
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