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Abstract: In this paper, we give conditions for a rate of convergence of Fisher information J and 
relative entropy D in the Central Limit Theorem. We use the Poincaré inequality and the theory of 
projections in to provide a better understanding of the decrease in Fisher information implied by 
results of Barron and Brown. 
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1. INTRODUCTION 
 

Bounds on Shannon entropy and Fisher 
information have long been used in proofs of 
central limit theorems, based on  quantification 
of the change in information as a result of 
convolution, as in the papers of Linnik (1959), 
[15], Shimizu (1975, [17]), Brown (1982, [5]), 
Barron (1986, [2]) and Jhonson (2000, [11]). 
Each of these papers have a final                 
step involving completeness or uniform 
integrability in which a limit is taken without 
explicitly bounding the information distance 
from the normal distribution. 

The purpose of the present paper is to 
provide an explicit rate of convergence of 
information distances, under certain natural 
conditions on the random variables. Let 

 be independent identically 
distributed random variables with mean zero, 
variance  and density function  

satisfying Poincaré conditions (relating  
norms of mean zero functions to  norms of 
their derivative), and let be the 

corresponding  density. The relative 
entropy distance is: 
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In the case of random variables with 
differentiable densities, the Fisher information 
distance is 
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which is related to the Fisher information 
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between derivatives of log-densities, and gives 
a natural measure of convergence, stronger 
than those in existing theorems, as described in 
Lemma 1.6 in [13], where it is shown that if X 
is a random variable with density f and ϕ  is a 
standard normal, then: 
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Where ),f(dH ϕ  is the Hellinger distance: 
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At the same time, this lemma shows the 
relationship between convergence in Fisher 
information and several weaker forms of 
convergence. Recent work by Ball et al (2002, 
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[1]) has also considered the rate of 
convergence of these quantities. Their paper 
provides similar results, but by a very different 
method, involving transportation costs and     
a variation characterization of Fisher 
information. 

  

 The very important point of the present 
paper is the proof of the relationships (9) and 
(10) respectively, describing the Fisher 
information. 

 In examination the Fisher information a 
central role is played by the score function: 
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The score function of the sum of 
independent random variables, via a 
conditional expectation, has been used in 
proving the convolution inequalities for Fisher 
information and Shannon entropy (in the work 
of Stam [16], Blachman  [3] and others). 

   In particular, and  are independent 
and identically distributed with score function 

, then the score  of the sum  is the 
projection of 
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linear space of functions of , so by the 
Pythagorean identity and rescaling, it follows: 
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Papers by Shimizu [17], Brown [5] and 
Barron [2] quantify the change in Fisher 
information with each doubling of the sample 
size, deducing convergence to the normal 
distribution along the powers of two 
subsequence and convergence of the entire 
information sequence ,by subadditivity 
of . However, these papers only rarely 
consider the behavior of the Fisher information 
for  (for  a small normal 
perturbation).  
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In general, we can conclude that if the 
Fisher information )S(I k  is always finite, 
since it is decreasing and bounded below, this 
difference sequence )S(I 1)S(I kk +−  tends to 

zero. The expression (07) measures the 
squared  difference between a “ridge 
function” (a function of the sum ) and 
an additive function (a function of the form 
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)Y(g)Y( 2211g + . From calculus it is known 
that, in general, the only functions: 
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that are both ridge and additive are the     
affine functions g  and 1111 bay)y( +=

2222 bay)y(g +=  with a  constants, 
that is, the functions for which the derivatives 

, 
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'
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By Lemma 3.1 of [5] (see also Barron, [2]) 
we have: 

Lemma 1.1 [5]. For any two functions f 
and g there exist some constants a,b such that: 
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where  and Y  are independent identically 
distributed normally. 
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The main technique used in the present 
paper will enable us to generalize Lemma 1.1 
to a wider class of random variables . 
For example, consider any  and  
independent identically distributed with finite 
Fisher information I. Proposition 2.1 suggests 
us to take a differentiable ridge function 

+  with closest additive function g. 
Then for a certain constant μ : 
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Our proof starts with , finds its 
additive part with =  and 
recognizes that: 
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In this paper, the use of the Cauchy-
Schwarz inequality completes the proof as 
detailed in Section 2.  

 Poincaré constant is the notion which 
provides a relationship between  norms on 
functions and the norms on their 
derivatives: 
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Definition 1.1. Given a random variable Y, 
define the Poincaré constant : YR
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where  is the space of absolutely 
continuous functions g such that 

)Y(H1

  ,0)Y 0)Y(Eg(g Var =>  and  

and the restricted  Poincaré constant : 
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For certain  is infinite. However, 
is finite for the normal and other log-

concave distributions (see, for example, [12], 
[9], [8], [7], [4]). Because , 

then , that is we maximize over a 
smaller set of functions.  
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The other important definition that we need 

is that of weak differentiability, introduced in 
[10]. Brown and Gajek [6] and Lehmann and 
Casella [14] discuss this condition and provide 
easier check conditions under which it will 
hold. 

Definition 1.2. A random variable Y has 
weakly differentiable density p if there exists a 
function  (that is ) such 

that for all f with , the 
function 
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Poincaré constants are not finite for all 

distributions Y. Indeed, by Borovkov and Utev  
[4] if , then by considering ∞<YR

nxn )x(g = , we inductively deduce that all 
the moments of Y are finite 
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The Berry-Essen theorem asserts that only 
th moment conditions suffice to ensure 

an explicit 

δ+2

2/n/1O δ

1≤δ
 rate of weak 

convergence, for 0 < . The paper by 
Johnson and Barron describe a proof of Fisher 
information convergence under only second 
moment conditions, though without an explicit 
rate: 

Theorem 1.1. [13]. Let  be 
weakly differentiable, independent identically 
distributed with finite variance   functions 
and define the normalized sum: 
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. This theorem extends Lemma 

2 of Barron (1986, [2]), which holds only 
when X is of the form  where  is a 
normal perturbation. 
  

2. PROJECTION OF FUNCTIONS  
IN  

 
Although the main application of the 

following proposition will concern score 
functions, we present it as an abstract result 
concerning projection of functions in 

. 
      Proposition 2.1 [13]. Consider independent 
random variables  with weakly 
differentiable densities and functions   
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Remark 2.1. We note that μ  has the same 
value in both cases (for  and ), because:  1r 2r
 

[ ]
[ ] ))'Y(g(E)Y()Y(gE    

))'Y(g(E)Y()Y(gE

111111

222222

=ρ−=
=μ = − ρ

   (13) 
 



 Convergence to Fisher Information and the Central Limit Theorem 
 

 56 

Remark 2.2. In general, this inequality 
holds for any weakly differentiable  
with finite Fisher information (that is the score 
function is in ), whereas previous such 
expression have only held in the case of  

 for some . 

21 Y,Y

2L

τ+ ZU~Y ii iU
Remark 2.3. This inequality holds for 

independent random variables that are not 
identically distributed. One may prove   
Central Limit Theorems giving information 
convergence to the normal for random 
variables satisfying a uniform Lindeberg type 
condition [11]. In certain cases we can provide 
a rate of convergence. 

Remark 2.4. We can produce a similar 
expression using a similar method for finite 
dimensional random vectors  and . Weak 
differentiability can be defined in this case and 
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=ρ  will usually be the ith 

component of the score vector function ρ . In 
this case a similar analysis can lead to an 
alternative proof of the theorems in [13]. 
 

3. RATE OF CONVERGENCE OF 
FISHER INFORMATION 

 
Let us extend Lemma 1.1 from the case of 

normal  and  to more general 
distributions, providing an explicit exponential 
rate of convergence of Fisher information, 
have finite restricted Poincaré constants  

and .The following lemma holds 
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Proposition 3.1. Let Y  and Y  be two 
independent identically distributed random 
variables which are weakly differentiable and 
have the variance  and restricted Poincaré 
constant 
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By performing succesive projections onto 
smaller additive spaces a more careful analysis 
generalises Proposition 3.1 to obtain the very 
important result of this section (see Theorem 
3.1), for a given function f, define a series of 
functions by f =  and, for m<n, 

 

⎟
⎠

⎞
⎜
⎝

⎛ +++

=⎟
⎠

⎞
⎜
⎝

⎛ ++

+
++ n

XX...XfE

n
X...Xf

1mm1
1mX

m1
m

1m

      (16) 

 

Further, define: 
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Then, for independent identically 
distributed and weakly differentiable Xi, we 
have 
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Lemma 3.3. For independente identically 
distributed     the   sum   of   these   squared iX
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depending on  and  to a class of 
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family of normal distributions, equations (7) 
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