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Controlling such complex machinery 
requires a thorough understanding of the 
performance of the engine “system” as a whole. 

For some aviation applications, a gas turbine 
engine must provide a wide range of predictable 
and repeatable thrust performance over the 
entire operating envelope of the engine, which 
can cover the altitude from sea level to tens of 
thousands meters. 

These altitude changes along with variations 
in flight speed from takeoff to supersonic 
velocities result in large, simultaneous 
variations in engine inlet temperature, inlet 
pressure and exhaust pressure. 

1. INTRODUCTION

The gas turbine engine and its related 
technologies represent one of the most efficient 
forms of propulsion and power generation, with 
applications ranging from land-based power 
generation, ground-based vehicle propulsion, 
on-board power and propulsion sources for 
marine ships, to aircraft propulsion systems. 

Design of a gas turbine engine requires the 
knowledge of multiple academic disciplines 
including aerodynamics, fluid mechanics, solid 
mechanics, thermodynamics, chemistry and 
material sciences (Jaw, 2009). 
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Control system complexity can be measured 
by the number of control variables or by the 
number of measured variables in the system. 

Typically, the number of control variables 
corresponds directly to the number of actuators 
and the number of measured variables to the 
number of sensors. 

2. DYNAMIC ENGINE MODELS

Mechanical systems dynamics due to the 
rotating inertias constitute the most important 
contribution to the engine transient behavior. 

The acceleration of the rotor (consisting of  
the compressor, turbine and the shaft) based on 
the principle of Newtonian mechanics is

J
QD

=ω  				              (1)

where ω  is the angular acceleration of the 

rotor, CT QQQ −=D  represents the difference 
between the torque produced by the turbine, 

TQ , and the torque required by the compressor, 

CQ , and J is the mass moment of inertia of the 
compressor-shaft-turbine body (Fig. 3). 

The angular velocity ω  is usually 
substituted by the shaft rotational speed N and 
the differential torque QD  is represented by a 
function of shaft speed and fuel flow rate fW . 

Substituting these in the torque function, 
the equation for the shaft rotational speed is 
expressed as

( )
J
W,NfN f=  			             (2)

Engine dynamics arise from complex, 
interacting phenomena: gas-flow behavior in 
the compressor and turbine, shaft inertias and 
losses, fuel flow transport delay, combustion 
and the thermal behavior of the engine and its 
surroundings (Rotaru, 2008). 

The linear model of shaft dynamics for 
one-spool engine, based on the Taylor’s series 
expansion of the function f at a (steady-state) 
nominal operating point is (Ronald, 2005)

These large variations in engine operating 
conditions and the demand for precise thrust 
control, coupled with the demand for highly 
reliable operations,  create a significant 
challenge for the design of the engine control 
systems (Mattingly, 2006).

Modern gas turbine engine control systems 
are closed-loop control systems that consist of 
all four types of control components: controller, 
sensor, actuator and accessory (Farokhi, 2009). 

The simplest engine control system is one 
that produces desired engine thrust or shaft 
power by changing the fuel flow (Fig.1). 

Because reliable, in-flight engine thrust 
measurement is not currently practical, the 
engine shaft rotational speed N or engine 
pressure ratio (EPR) has been used effectively 
as an indicator of engine thrust (or power). 

Hence, for this simplified control system, 
the command variable (or the desired output 
variable) is shaft speed (or engine pressure 
ratio), the control variable is actuator position, 
the actuator is fuel metering valve, the output 
of the metering valve is the fuel flow that is 
injected in the combustor, the output of the 
engine is engine power setting variable (shaft 
speed or engine pressure ratio); furthermore, 
fuel control accessory components are the fuel 
tank and the fuel pump and the sensors (Rotaru, 
2007).

The resulting compressor pressure ratio and 
air mass flow rate are plotted on the compressor 
map once a steady-state has been reached (Fig. 
2). 

Fig. 2. Engine operating limits on compressor 
map
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The station numbering and the nomenclature 
used in the above equations are presented at the 
end of the article.

Similarly, the output equation is given by

f
f

2
2

1
1

W
W
yN

N
yN

N
yy D⋅

∂
∂

+D⋅
∂
∂

+D⋅
∂
∂

=
     

(6)

In the matrix notation, the shaft dynamics 
for a tow-spool engine are expressed as
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The frequency-domain representation 
of two-spool engine dynamics expressed in 
transfer function form for the output variable y 
is 
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where I is the identify matrix. This transfer 
function represents a second-order dynamic 
system (Richter, 2012).

The general nonlinear form of the state 
and the output equations of an engine can de 
expressed by the following equations
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where f and g are nonlinear functions of the 
state variable, the input variable and time. For 
gas turbine engine, f and g are smooth enough, 
within the engine’s operating envelope, to 
have a Taylor-series approximation around the 

nominal operating condition 0x  and 0u . 

Fig. 3. Engine shaft dynamics
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The output equation for any engine variable 
y can be expressed as a function of speed and 
fuel flow as well, so that a small variation of 
the output variable from its nominal value is 
expressed as
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The transfer function from the input variable 
fuel flow to the output variable y is expressed as
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For a gas turbine engine, the coefficient a is 
always less than zero in the control envelope. 

Equation (5) represents a first-order lag, 
which means that the speed response behaves 
like a lag function after the fuel flow is changed. 
The linear model of shaft dynamics for a two-
spool jet engine can be derived by extending 
the one-spool model of eq. (3) and eq. (4) with 
the dynamics of the second shaft. 

For a two-spool engine we have
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The responses of the rotational speeds 

( ) 111 N/NtN D=  and ( ) 222 N/NtN D=  to an 
impulse input (Dirac function), to a unit step 
input (Heaviside function) and to a sinusoidal 

input ( ω= is ) for fW  and aF are presented in 
Figures 4-12.

Fig. 4. Impulse response of  the LPC 
rotational speed to the fuel flow rate input

Fig. 5. Impulse response of  the HPC 
rotational speed to the fuel flow rate input

3. NUMERICAL RESULTS

Starting from hypothesis that compressor 

air flow rate, aG , is equal to the turbine gas 

flow rate, TgG , applying the energy and mass 
conservation theorems, one can get
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where N is the rotational speed, J- inertia 
momentum, G-flow rate for air and gases, fW

-fuel flow rate, uH - low heating value of fuel. 
For a tow-spool engine the above equations 
become: 
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The transfer function from the input 

variables fuel flow, ( )sWf , and the exit nozzle 

area aS , to the output variable, LPC rotational 

speed ( )sN1  and HPC rotational speed ( )sN2
, for a two-spool engine with 
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Fig. 9. Impulse response of  the HPC 
rotational speed to the nozzle area input

Fig. 10. Step response of  the LPC 
rotational speed to the nozzle area input

Fig. 11. Step response of  the HPC 
rotational speed to the nozzle area input

    

Fig. 6. Step response of  the LPC rotational 
     speed to the fuel flow rate input

Fig. 7. Step response of  the HPC rotational 
speed to the fuel flow rate input

Fig. 8. Impulse response of  the LPC 
rotational speed to the nozzle area input
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NOMENCLATURE

The naming convention for the symbols 
representing engine models and control laws  
follows the convention defined as: ∗T - total 

temperature [K]; ∗p - total pressure [ ]2/ mN
; π  - pressure ratio; G  and fW  - mass flow 

rate [ ]sgk /  ; caσ  - combustion chamber total 
pressure loss coefficient; γ  - ratio of specific 

heat; 4.1=γ ; 33.1=γ′ ; pc - specific heat at 

constant pressure ( )[ ]KgkJ ⋅/  ; HPC – high 
pressure compressor; LPC – low pressure 

compressor; ( ) iii xxx D+= 0 .
Subscripts: c – compressor; t – turbine; 1-5 

engine cross section number; 2.1 – HPC inlet 
section; 4.1 – LP inlet turbine.
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Fig. 12. Frequency response of  the LPC 
and HPC rotational speed

4. CONCLUSIONS

The classical linear compensation is 
adequate only to govern the engine close to a 
fixed operating point, as defined by the current 
inlet conditions and desired thrust set point. 

Aside from nonlinearity and parametric 
changes in the engine, critical variables must be 
maintained within safety ranges. 

Linear compensation is the basic building 
block of standard aircraft engine control system. 

Parametric changes and nonlinearity 
are addressed with gain-scheduled linear 
compensators while limit protection logic 
schemes are used to override the active linear 
regulator when a critical variable approaches its 
safety limit. 

Even with constant control gains, limit 
relaxation is reflected in faster responses, 
and conversely, the main output response 
will become slower if limits are made more 
restrictive.

There are two ways of obtaining faster 
thrust response: redesigning the regulators for 
larger closed-loop bandwidths and relaxing the 
protective limits on variables which tend to 
peak as thrust response is made faster. 

Among the variables displaying such 
peaking are turbine outlet temperature, which 
peaks during acceleration, stall margin, which 
tends to undershoot during acceleration and 
combustor pressure, which tends to undershoot 
during deceleration. 


