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ABSTRACT. A fundamental issue of Smoothed Particle Hydrodynamics (SPH) theory is the smoothing 
function, often called smoothing kernel function, or smoothing kernel or simply kernel. 
The kernel function determines the pattern of the function approximation, determines the consistency, the 
accuracy of the results. So, a maximum attention must be paid to the smoothing function, because by a 
right choosing (when this is possible) we can improve the results. 
This paper presents some theoretical consideration upon smoothing functions, some requirements for 
these and how this issue is implemented and available in Ls-Dyna program. Also, some examples are 
presented, which represent fundamentals of the final conclusions. 
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1. INTRODUCTION 
 

Smoothed particle hydrodynamics (SPH) is 
a meshfree Lagrangian particle method having 
a short history comparatively with finite 
difference method (FDM) or finite element 
method (FEM). Its begining can be found in 
1977, when it was used to solve astrophysical 
problems in three-dimensional open space. 

Nowadays the SPH method is being used 
in many engineering fields. Between these, the 
numerical modeling of fluid flows is one of a 
great succes, but not many years ago, SPH was 
also used in applied mechanics. 

Many special softwares were created and 
others well known powerfull numerical 
programs implemented this new method, SPH. 

In our country this method is less used 
despite its advantages in solving of the 
problems involving large deformation, free 
surface etc. Our paper offers some specific 
information for an easier understanding and 
even using of SPH method. 

   

2. INTEGRAL REPRESENTATION 
OF A FUNCTION  

 
The theoretical fundamentals of the SPH 

method can be approched in two steps. The 
first is the integral representation or kernel 
approximation of the field functions. 

The second one is the approximation of 
particle parameters (mass, velocity, etc.). 

Integral representation of a function , 
used in the SPH method starts from the 
following identity: 

 

∫ ′′−′=
Ω

δ xd)xx()x(f)x(f  

 (1) 
 

where  is a function of a position vector f x , 
which can be an one-, two- or three-
dimensional one; )xx( ′−δ  is a Dirac 
function, having the properties: 
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In equation (1), Ω  is the function domain, 

which can be a volume, that contains the x , 
and where  is defined and continuous. )x(f

By replacing the Dirac function with a 
smoothing function  the integral 
representation of  becomes: 

)h,xx(W ′−
)x(f

 

∫ ′′−′=
Ω

xd)h,xx(W)x(f)x(f  

 (3) 
 

where is the smoothing kernel function, or 
smoothing function, or kernel function. 

W

The parameter , of the smoothing 
function W , is the smoothing length, by which 
the influence area of the smoothing function 

 is defined (Figure 1-a and 1-b). 

h

W
  

 
Fig. 1-a Support domain of W  

 

 
Fig. 1-b  Graphical representation of 2D-Kernel 

function 

 

As long as Dirac delta function is used, the 
integral representation, described by equation 
(1), is an exact (rigorous) one, but using the 
smoothing function W  instead of Dirac 
function, the integral representation can only 
be an approximation. This is the reason for the 
name of kernel approximation. Using the angle 
bracket  this aspect is underlined and the 
equation (3) can be rewritten as: 

 

∫ ′′−′=
Ω

xd)h,xx(W)x(f)x(f  

 (4) 
 
The smoothing function W  is usually 

chosen to be an even one, which has to satisfy 
some conditions.  

The first condition, named normalization 
condition or unity condition is: 

∫ =′′−
Ω

1xd)h,xx(W   

 (5) 
 
The second condition is the Delta function 

property and it occures when the smoothing 
length approaches zero: 

 
)xx()h,xx(Wlim

h
′−=′−

→
δ

0
 

 (6) 
 
The third condition is the compact 

condition, expressed by: 
 

0=′− )h,xx(W  when khxx >′−  
 (7) 
                                        
where k is a constant related to the smoothing 
function for point at x , defining the effective 
non-zero area of the smoothing function as the 
figure 2 shows. 
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Fig. 2  Smoothing length 
 

As the particle approximation is concerned, 
the continuous integral aproximation (4) can 
be converted to a summation of discretized 
forms, over all particles belonging to the 
support domain. 

Changing the infinitesimal volume xd ′  
with the finite volume of  the particle jVΔ , the 

mass of the particles  can be written, jm
 

jjj Vm ρΔ=    
 (8) 
 
and finally, relation (3) becomes: 
 

∑
=

−=
N

j
jj

j

j )h,xx(W)x(f
m

)x(f
1ρ

 (9) 
 

The particle approximation of a parameter 
described by a function, for particle  can be 
expressed by, 

i
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          (10) 

 
where  .                   (11) )h,xx(WW jiij −=
 

3. PROPERTIES OF THE 
SMOOTHING FUNCTIONS 

 
In the SPH literature, various requirements 

of the smoothing function are debated.  
The most important of them (the first 7th) 

are presented below. 

 the smoothing function has to be 
normalized over its support: 
 

∫ =′′−
Ω

1xd)h,xx(W            (12) 

 
 the smoothing function has to be 

compactly supported: 
 

0=′− )h,xx(W  for khxx >′−            (13) 
 

 the smoothing function has to be positive 
for any point at x′  within the support 
domain: 
 

0≥′− )h,xx(W                        (14) 
 

 the smoothing function value has to be 
monotonically decreasing with the 
increase of the distance away from the 
particle. 

 the smoothing function value has to satisfy 
the Dirac delta function condition as the 
smoothing length approaches to zero: 

 
)xx()h,xx(Wlim

h
′−=′−

→
δ

0
          (15) 

 
 the smoothing function value has to be an 

even function (symetric). 

 the smoothing function value has to be 
sufficiently smooth (smoothness). 
 

4. SMOOTHING FUNCTIONS 
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Published literature presents different 

smoothing function (also called smoothing 
kernel function, smoothing kernel, or kernel). 

Theoretically, any function having the 
properties presented above, can be employed 
as SPH smoothing function. First time, Lucy 
(1977) used the following bell-shaped function 
as the smoothing function: 
 

⎩
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where α  is 
4
5 , 

π
5  or 

π16
105 ,  is a number 

representing the space dimension, 

n

h
xx

s
′−

=  

or 
h
rs == , r  being the distance between two 

points (particles).  
The graphical representation of this 

smoothing function and its derivatives (first 
and second) can be seen in the figure 3. 
  

 
Fig. 3 Smoothing function and its derivates,  

used by Lucy in 1977 
 

Monaghan in 1992 and Gingold and 
Monaghan in 1977 assumed the smoothing 
function to be a Gaussian, expressed by: 
 

2s
n e

h
)h,s(W −=

α            (17) 

 

 
Fig. 4 Smoothing function and its derivates,  

used in 1977 and 1992 (Ginglod and Monaghan) 
Many notations used in relation (16) are 

the same used in previous type of kernel.   
The notation α  has the following 

expression: 50
1

.π
, 
π
1  or 51

1
.π

in function of 

the space dimension (1D, 2D or 3D). 
The graphical representation of this 

smoothing function and its derivatives (first 
and second) can be seen in the figure 4. 

Monaghan and Lattanzio, in 1985, used a 
smoothing function based on the cubic spline 
function, named B-spline function: 
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The constant α  has the values ,1  
π7

15  or 

π2
3  in function of the space dimension (1D, 

2D or 3D).  This type of smoothing function, 
so far, it is the most widely used, specially in 
dedicated software.  

The graphical representation of this 
smoothing function and its derivatives (first 
and second) can be seen in the figure 5. 
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Fig. 5  B-spline smoothing function 
and its derivates  

                                   
Spline functions of higher order (quartic and 

quintic) can be more closely in approximating the 
Gaussian and they are more stable. 

The expression of a quintic spline function 
(Morris, 1996) is: 
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The graphical representation of this 

smoothing function and its derivatives (first 
and second) can be seen in the figure 6. 
 

 
Fig. 6  Quintic spline smoothing function 

and its derivates  
 

In 1996, Johnson et al. used a quadratic 
smoothing function to simulate the high 
velocity impact problem.  
 

 
Fig. 7  Quadratic spline smoothing function 

and its derivates  

The graphical representation of this 
smoothing function and its derivatives (first 
and second) can be seen in the figure 7. 

The expression of the Johnson smoothing 
function is: 
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for  being between zero and two (s 20 ≤≤ s ).  
       

5. SMOOTHING FUNCTIONS IN 
LS-DYNA PROGRAM 

 
One of the most powerfull program for 

simulation of the dynamic problems, which 
has the SPH method implemented, is Ls-Dyna. 

This program uses a cubic B-spline kernel 
function, described above. 

The user can make a choosing regarding to 
the the particle approximation, having the 
following options, by FORM parameter 
(CONTROL_SPH): default formulation (0), 
renormalization approximation (1), symmetric 
formulation (2), symmetric renormalized 
approximation (3), tensor formulation (4), 
fluid particle approximation (5), or fluid 
particle with renormalization approximation 
(6). These options can be made  

Others options can be made regarding to 
the computation or not of the particle 
approximation between two different SPH 
parts and regarding to the time integration type 
for the smoothing length h : 
 

( ) )v(div)t(h
d

)t(h
dt
d 1

= ,           (21) 

or, 

( ) ( ) 311 )v(div)t(h
d

)t(h
dt
d

=           (22) 

 
The smoothing length , can be calculated 

by the program, just the calculus begining, if 
this is permited to be variable during 
computing simulation, or can has a defined 
values, established by the user (using 
parameters CSLH, HMIN and HMAX, of 
SECTION_SPH). 

h

 
6. NUMERICAL TESTS 

 
An well known experimental test, Taylor 

test, is presented by numerical simulations, 

using Ls-Dyna program. The test consist in the 
impact between a cilynder with a rigid wall.  

A solid cylinder, having a velocity of 200 
m/s, with radius of 5 mm and the length of 50 
mm, made of 1018 steel was considered.   

Two numerical models studied the impact 
between this metal rod with a rigid wall: FEM 
and SPH models. Finite element model was 
made using 2993 nodes and 2560 elements 
(element size being 1.250x1.077x1.077 mm) 
and can be seen in the figure 8. 

 

 
Fig. 8  Finite element model 

                       
SPH model consisted in 4000 particles 

(equal distance between particles 1.00 mm). 
Figure 9 (a and b) presents the SPH model.   

 
a) 

 
b) 

Fig. 9 SPH model of the bar 

 
For both models, the fundamental measure 

units were: for length millimeter [mm], for 
time second [s] and for force Newton [N]. 

Analysis time was established at 0.003 
seconds, for the stress and displacement field 
analysis. in a period after the impact, when the 
velocity changed its sign. 

The study of material behavior was based 
on plastic-kinematic material model. 

In the Figure 10, deformed shape and UX-
displacement field are presented, for FE and 
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SPH modeling, for the time of  6e-5 s. 

 

 
 

 
Fig. 10 UX-displacement field 

 
Table 1. Impact effects upon the bar 

Bar Head Bar Tail 
UXmax VXmax UXmax VXmaxModels 

mm mm/s mm mm/s 
FEM 43.390 26557 38.404 28720 

43.475 27295 38.172 26891 
SPH  Er. 

0,2% 
 Er. 

2,77% 
 Er.      

-0.6% 
 Er.      

-6,4% 

Table 1 presents some of the results for the 
default values of SPH using. In the table 2, the 
same results are presented for different values 
of the parameter FORM. 

 
Table 2. The influence of the kernel 

Bar Head Bar Tail 
UXmax VXmax UXmax VXmax 

mm mm/s mm mm/s 
FORM=1 42.592 25176 37.866 27575 
Er. [%] -1.84 -5.20 -1.40 -3.98 
FORM=2 43.556 25371 38.245 27010 
Er. [%] 0.38 -4.46 -0.41 -5.95 
FORM=3 42.055 24571 37.302 26559 

Er. [%] -3.10 -7.47 -2.87 -7.52 
FORM=5 43.545 25384 38.235 26997 
Er. [%] 0.36 -4.41 -0.44 -5.99 
FORM=6 42.272 25055 37.546 27687 
Er. [%] -2.57 -5.65 -2.23 -3.59 

 
7. CONCLUSIONS 

 
Using of different smoothing functions 

leads us to different results, which could be far 
enough from the reality.  

The choosing of the smoothing function 
and the options referring to this as well has a 
great importance for the calculus results. 

The default values offered by Ls-Dyna 
program leads us to the best results, for 
classical conditions regarding to the material 
and its loading. 

The choosing possibility of different 
smoothing functions (or different versions of 
these) must be studied, because this aspect 
allow us to do some numerical calibration of 
the SPH method, as the results to be the best.  
 

REFERENCES 
 
1. Liu, G. R., Liu, M. B., Smoothed 

Particle Hydrodynamics, World Scientific 
Publishing Co.Pte.Ltd., 2009 

2. Monaghan, J., J., Smoothed particle 
hydrodynamics, In Annu. Rev. Astron. 
Astrophys., 1992, s. 543-574 

3. Tanaka, K., Numerical Study on the 
High Velocity Impact Phenomena by 
Smoothed Particle Hydrodynamics (SPH), 1-
1-1 Umezono, Centtral 2 Tsukuba, Ibaraki 
305-8568 JAPAN 

4.   *   *   *    LS-DYNA Documentation 
 

807


