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1. INTRODUCTION 

The connection between two or among 
several factorial variables and a resulting 
variable is called multiple connection, 
therefore the choice of the factorial variables 
is very important so that the variation of the 
resulting variable should be real. Factorial 
variables exert a greater or smaller influence 
on the resulting variable, consequently some 
of the factorial variables are more important 
and must be taken into account in the study 
which is made, while for other variables it is 
proven that they are not so important for the 
study of the resulting variable variation and 
must be eliminated. Factorial or causal 
variables are ordered according to the 
importance of their actions on the effect 
phenomenon and one looks for a regression 
equation which is the best. 

A best pattern of regression can be 
obtained by the retrograde elimination 
method, which consists of the successive 
elimination of the factorial variables taken 
initially into the multiple regression equation 
until the pattern becomes the best, carefully 
observing to statistically verify the 
emergence criterion.  

         

2. STATISTICAL HYPOTHESIS USED 
FOR THE CHOICE OF VARIABLES 
WHICH ARE ELIMINATED FROM 

THE PATTERN 

We take the dependent variable Y and  k 
the independent variabiles; there are 

 connected by a multiple 
regression equation : 
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where the coefficients’ matrix of the pattern 
is ( )kj

T aaaaa ......10=  and the matrix of the 
parameter estimators of the pattern is 

( )kj
T aaaaa ˆ...ˆ...ˆˆˆ 10= , estimators obtained 

through the smaller quadrants method.  

We assume that the estimators obtained 
are unbiased , having a minimal variance and 
following the normal law. 

Variable X  is normal  when 

the standardized variable 

),( 2σmN
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=
mXZ  follows 

the reduced normal law . )1,0(N
The main diagonal of the covariance 

matrix of the vector a is formed by the 
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estimators variances, the matrix expression 
being:  
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follow the law Student with   
degrees of freedom, therefore using the 
relations (1) and (4) we obtain: 
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these are distributed with  Student with  
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3. RETROGRADE ELIMINATION 
METHOD TO OBTAIN THE BEST 

REGRESSION WE DO THE 
FOLLOWING 

 
3.1. We obtain niy L

i ,1,ˆ =∀  by the 
smaller quadrants method using all the initial 
factorial variables . kXXX ,...,, 21
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 then we 

accept the hypothesis  therefore the 
factorial variable 

)(
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rX  is eliminated from the 
pattern, we write the new fitting equation 
without rX  and we obtain a partial best 
regression pattern or, if  

1;
2

1calculat
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α
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we accept the hypothesis  that is )(
0
rH

0=ka and we obtain the partial best pattern 
of the stage. 
3.4. To the pattern obtained at 3.2 we apply 
the stages 3.2 and  3.3again until the stage 
where the obtained result does not allow the 
elimination of other variables and that final 
pattern obtained is the best . 
 
Example: 

 
 
 

Table  1 
Nr.
crt. ix1 ix2 ix3 iy  2

1ix  2
2 ix  2

3ix  
1 0,1 3,25 22,3 17,2 0,01 10,5625 412,09
2 0,2 2,90 18,6 22,5 0,04 8,41 345,96
3 0,1 3 21,4 18 0,01 9 457,96
4 0,15 2,8 23,5 20,4 0,0225 7,84 552,25
5 0,3 3,4 25 24,3 0,09 11,56 625 

Total 0,85 15,35 108,8 102,4 0,1725 47,3725 2393,26
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(5) 
Table 1. Follow up 

ii xx 21 ii xx 31 ii xx 32 ii yx1 ii yx2 ii yx3  2
iy  

0,325 2,03 65,975 1,72 55,9 349,16 295,84
0,58 3,72 53,94 4,4 65,25 418,5 506,25
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0,3 2,14 64,2 1,8 54 385,2 324 
0,42 3,525 65,8 3,06 57,12 479,4 416,16
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represents the multiple linear regression 
pattern obtained after the fitting using all the 
factorial variables.  
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