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1. Introduction
In this lecture we will derive the formulas for
the symmetric two-sided prediction
interval for the n + 1-st observation and the
upper-tailed prediction interval for the
n+1-st observation from a normal distribution
when the variance S is unknown. We will
need the following theorem from probability
theory that gives the distribution of the
statistic X — X, + 1.
Suppose that X, X, . . . ,Xp,Xp+1 1S @ random
sample from a normal distribution
with mean p and variance S°.
Theorem 1. The random variable
T = (X —Xu+1)/(qntIn S) has a distribution with
n — 1 degrees of freedom.

2. The
formula
Now we can prove the theorem from statistics
giving the required prediction interval for the
next observation x,+1 in terms of n
observations Xj, X», * * * , X, Note that it is
symmetric around X. This is one of the basic
theorems that you have to learn how

two-sided prediction interval
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to prove. There are also asymmetric two-sided
prediction intervals.
Theorem 2. The random interval

Y—;{a S 1+1,Y+;( « S 1+l .
E,n—l n 175,n—1 n 1S a

100(1-a)% prediction interval for X;;.

In the next theorem we will give the formula
for the upper-tailed prediction interval for the
next observation Xy 1.
Theorem 3.  The

X7, Syfl+—,00)
E,n—l n

is a 100(1-a)% prediction interval for the
next observation X,1.

Once we have an actual sample x, X, . . .
, we obtain the observed value

random interval

’XH



— 1
(X_l%,n_ls\/HH’oo) of the upper-tailed

i 1
o X - S, 1+—,
prediction interval ( l%,m V' ' oo).

The observed value of the upper-tailed
prediction interval is also called the
upper-tailed 100(1-a)% prediction interval for

Xnt+l.
- [
X—=x, Sil+—
—,n-1 n
2
1
S 1+—.
\" n is often

called a prediction lower bound for xpi;
because

P&_ZEMS'/H% <X,.)=1-a
“, :

3. Application

Choose the euro-dollar of the last 45 days:
42600, 42649, 42490, 42496, 42584, 42509,
42493, 42412, 42350, 42261, 42331, 42139,
42150, 42108, 42051, 42016, 42127, 42065,
41869, 41902, 41932, 42048, 41848, 41865,
41816, 41788, 41683, 41685, 41439, 41260,
41020, 40881, 41065, 41276, 40984, 41141,
41367, 41333, 41147, 41035, 41089, 41146,
41084, 41152, 41140.

Using these data we treat
problems:

1. Graphical Representation

a) determining the change depending
euro-leu on the day:

The number random variable

. X —
or its observed value Z%,n—l

the following

"Eurolday " value diagram
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b) dividing the interval [40881;42649] in
subintervals and calculating the frequencies
of each subinterval as we determine the
frequency histogram:

"Value euro-frequency” histogram

frequency
(=]

2. Testing that euro-leu exchange rate
fluctuations can be approximated by a
normal distribution.
To solve the problem we will sort the data
ascending xi, we will plot coordinate points

(xi , z) ,1,.,45 , where z; are standardized

normal scores given by:
22 - px <x) = 0(x),

1o b
and (D(X):ﬁj_me 2 is the normal

distribution N(0,1). So we obtain:
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The aproximation of the evolution of the currency by a normal estimation estimation estimation estimation
distribution
[41678; [41845; [41583; [41553;
: 41869] 41902] 41964] 41994]
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It is noted that the points are located
approximately on a straight line and therefore [484:647] | [440,722] | [377;877] | [352;962]

the data hold normal distribution.
3. Numerical characteristics determination:

The selection mean: X = %

X = 41773.91
The standard deviation:
g2 [ =XJ + (e, - X

n-1

S?=302619.6

o s J(xl_i)z+...+(xn_§)2
’ n-1
S=550.1087

4. We determine an interval of:
1) 100(1-a)% confidence for the mean
1, in the cases a=0.50, 0.75, 0.95, and
0.98.
i) 100(1-a)% the
deviation o, in the cases a=0.50, 0.75,
0.95, and 0.98.
i)

confidence  for

Note that with increasing confidence we
observe the increase of the length of the

interval.

5. We determine a prediction interval for
the random variable X, of the next

day currency

We have Z = Xt =

Koy =X
Sl+l
V" 'n

with n-1 freedom degree,

, a random variable

Interval of
50%

confidence
for mean

Interval of
75%
confidence
for mean

Interval of
95%
confidence
for mean

Interval of
98%
confidence
for mean
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P[_Za <Z<y, jzl—a
Z 1-Z -1
2 2
X =X
SO — ¥, e X .
—,n-1 1 1—,n-1
2 S,[1+—
n
We have
v 1 v 1
X=Xo Sl+==<X , <X+y S 1+—
ool n 1-Z n-1 n
Prediction Prediction Prediction Prediction
interval for | interval for | interval for | interval for
a=0,50 a=0,50 a=0,50 a=0,50




[41125; [40904; [40483; [40276;
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