

GERMANY

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2011 Brasov, 26-28 May 2011

MATHEMATICAL ESTIMATION IN FINANCIAL ECONOMICS

Sorina STOIAN, Oana RACHIERU

Department of Mathematical Analysis and Computer Science

Transilvania University of Brasov

Str. Iuliu Maniu nr. 50

ROMANIA

Abstract: This paper is an application to the euro-leu evolution and a prediction for this evolution. We are testing if that euro-leu exchange rate fluctuations can be approximated by a normal distribution.

2000MSC: 62?07, 62H12, 62Q05.

Keywords: estimation theory, prediction interval, standard deviation, trust interval.

1. Introduction

In this lecture we will derive the formulas for the symmetric two-sided prediction interval for the n+1-st observation and the upper-tailed prediction interval for the n+1-st observation from a normal distribution when the variance S^2 is unknown. We will need the following theorem from probability theory that gives the distribution of the statistic $X-X_n+1$.

Suppose that $X_1, X_2, \ldots, X_n, X_{n+1}$ is a random sample from a normal distribution with mean μ and variance S^2 .

Theorem 1. The random variable $T = (X - X_{n+1})/(q_n + \ln S)$ has a distribution with n - 1 degrees of freedom.

2. The two-sided prediction interval formula

Now we can prove the theorem from statistics giving the required prediction interval for the next observation x_n+1 in terms of n observations x_1, x_2, \cdots, x_n . Note that it is symmetric around X. This is one of the basic theorems that you have to learn how

to prove. There are also asymmetric two-sided prediction intervals.

Theorem 2. The random interval

$$\overline{X} - \chi_{\underline{\alpha}, n-1} S \sqrt{1 + \frac{1}{n}}, \overline{X} + \chi_{1 - \underline{\alpha}, n-1} S \sqrt{1 + \frac{1}{n}}$$
 is a

 $100(1-\alpha)\%$ prediction interval for X_{n+1} .

In the next theorem we will give the formula for the upper-tailed prediction interval for the next observation X_{n+1} .

Theorem 3. The random interval $\overline{(X} - \chi_{\frac{\alpha}{2}, n-1} S \sqrt{1 + \frac{1}{n}}, \infty)$

is a $100(1-\alpha)\%$ prediction interval for the next observation X_{n+1} .

Once we have an actual sample x_1, x_2, \ldots, x_n , we obtain the observed value

$$\overline{(x-\chi_{\frac{\alpha}{2},n-1}}S\sqrt{1+\frac{1}{n}},\infty)$$
 of the upper-tailed

prediction interval
$$\overline{(X} - \chi_{\frac{\alpha}{2}, n-1} S \sqrt{1 + \frac{1}{n}}, \infty)$$
.

The observed value of the upper-tailed prediction interval is also called the upper-tailed $100(1-\alpha)\%$ prediction interval for x_{n+1} .

The number random variable $\overline{X} - \chi_{\frac{\alpha}{2}, n-1} S \sqrt{1 + \frac{1}{n}}$

or its observed value
$$\bar{x} - \chi_{\frac{\alpha}{2}, n-1} S \sqrt{1 + \frac{1}{n}}$$
 is often

called a prediction lower bound for x_{n+1} because

$$P(\overline{X} - \chi_{\underline{\alpha}_{2}, n-1} S \sqrt{1 + \frac{1}{n}} < X_{n+1}) = 1 - \alpha.$$

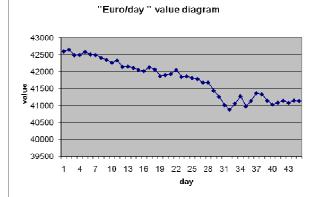
3. Application

Choose the euro-dollar of the last 45 days: 42600, 42649, 42490, 42496, 42584, 42509, 42493, 42412, 42350, 42261, 42331, 42139, 42150, 42108, 42051, 42016, 42127, 42065, 41869, 41902, 41932, 42048, 41848, 41865, 41816, 41788, 41683, 41685, 41439, 41260, 41020, 40881, 41065, 41276, 40984, 41141, 41367, 41333, 41147, 41035, 41089, 41146, 41084, 41152, 41140.

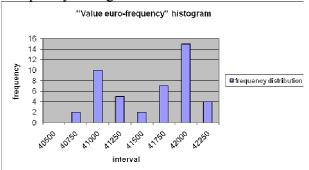
Using these data we treat the following problems:

1. Graphical Representation

a) determining the change depending euro-leu on the day:



b) dividing the interval [40881;42649] in subintervals and calculating the frequencies of each subinterval as we determine the frequency histogram:



2. Testing that euro-leu exchange rate fluctuations can be approximated by a normal distribution.

To solve the problem we will sort the data ascending xi, we will plot coordinate points (x_i, z_i) , 1,...,45, where z_i are standardized normal scores given by: $\frac{i-0.5}{n} = P(X < x_i) = \Phi(x_i),$

and
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}}$$
 is the normal

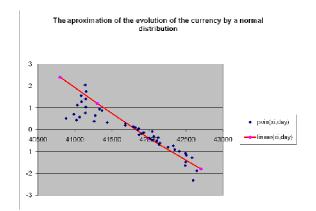
distribution N(0,1). So we obtain:

"GENERAL M.R. STEFANIK" ARMED FORCES ACADEMY SLOVAK REPUBLIC

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2011

GERMANY

Brasov, 26-28 May 2011



It is noted that the points are located approximately on a straight line and therefore the data hold normal distribution.

3. Numerical characteristics determination:

The selection mean: $\overline{X} = \frac{x_1 + ... + x_n}{n}$

$$\overline{X} = 41773.91$$
The standard deviation:
$$S^{2} = \frac{\left(x_{1} - \overline{X}\right)^{2} + ... + \left(x_{n} - \overline{X}\right)^{2}}{n - 1}$$

$$S^{2} = 302619.6$$
so , $S = \sqrt{\frac{\left(x_{1} - \overline{X}\right)^{2} + ... + \left(x_{n} - \overline{X}\right)^{2}}{n - 1}}$

$$S = 550.1087$$

4. We determine an interval of:

- i) $100(1-\alpha)\%$ confidence for the mean μ , in the cases α =0.50, 0.75, 0.95, and 0.98.
- ii) $100(1-\alpha)\%$ confidence for the deviation σ^2 , in the cases α =0.50, 0.75, 0.95, and 0.98.

i)

Interval of	Interval of	Interval of	Interval of
50%	75%	95%	98%
confidence	confidence	confidence	confidence
for mean	for mean	for mean	for mean

estimation	estimation	estimation	estimation
[41678;	[41845;	[41583;	[41553;
41869]	41902]	41964]	41994]

ii)

Interval of	Interval of	Interval of	Interval of
50%	75%	95%	98%
confidence	confidence	confidence	confidence
for	for	for	for
standard	standard	standard	standard
deviation	deviation	deviation	deviation
estimation	estimation	estimation	estimation
[484;647]	[440;722]	[377;877]	[352;962]

Note that with increasing confidence we observe the increase of the length of the interval.

5. We determine a prediction interval for the random variable X_{n+1} of the next day currency

We have
$$Z = \frac{X_{n+1} - \overline{X}}{S\sqrt{1 + \frac{1}{n}}}$$
, a random variable

with n-1 freedom degree,

$$P\left(-\chi_{\underline{\alpha},n-1} \le Z \le \chi_{1-\frac{\alpha}{2},n-1}\right) = 1-\alpha$$

so
$$-\chi_{\frac{\alpha}{2},n-1} \le \frac{X_{n+1} - \overline{X}}{S\sqrt{1 + \frac{1}{n}}} \le \chi_{1 - \frac{\alpha}{2},n-1}$$
.

We have $\overline{X} - \chi_{\frac{\alpha}{2}, n-1} S \sqrt{1 + \frac{1}{n}} \le X_{n+1} \le \overline{X} + \chi_{1 - \frac{\alpha}{2}, n-1} S \sqrt{1 + \frac{1}{n}}$

Prediction	Prediction	Prediction	Prediction
interval for	interval for	interval for	interval for
$\alpha = 0.50$	$\alpha = 0.50$	$\alpha = 0.50$	$\alpha = 0.50$

[41125;	[40904;	[40483;	[40276;
42422]	42643]	43064]	43271]

4. REFERENCES

- 1. Carroll, R.J., Ruppert, D.(1991). *Prediction and tolerance intervals with transformation and/or weighting*. Technometrics .
- 2. Patel, J.K.(1989). *Prediction intervals a review*. Commun. Statist. Theory and Methods.
- 3. Preston, S.(2000). *Teaching prediction intervals*. J. Statist. Educat. 3 Available:

(http://www.amstat.org/publications/jse/secure/v8n3/preston.cfm).

- 4. Schmoyer, R.L.(1992). Asymptotically valid prediction intervals for linear models. Technometrics.
- 5. Aitchison, J. and Dunsmore, I.R. (1975). Statistical Prediction Analysis. Cambridge, Cambridge University Press.
- 6. Adekeye, K.S.(2010). Prediction intervals: a tool for monitoring outbreak of some prominent diseases. Global Journal of Math. & Stats.