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Abstract: The principal focus of the presence study is to describe the key physical features and techniques 
for modeling the unsteady aerodynamic effects found on helicopter rotor blade operating under nominally 
attached flow conditions away from stall. The unsteady effects were considered as phase differences 
between the forcing function and the aerodynamic response, being functions of the reduced frequency, the 
Mach number and the mode forcing. For a helicopter rotor, the reduced frequency at any blade element 
can’t be exactly calculated but a first order approximation for the reduced frequency  gives useful 
information about the degree of unsteadiness. The sources of unsteady effects were decomposed into 
perturbations to the local angle of attack and velocity field. 
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1. INTRODUCTION 
 

     The classical unsteady aerodynamic 
theories describing the observed behavior have 
formed the basis for many types of rotor 
analysis. The tools for the analysis of 2-D, 
incompressible, unsteady aerodynamic 
problems were  extended to compressible 
flows, being a basis for developing linearized 
unsteady aerodynamic models applicable to 
compressible flows. But, while the classical 
theories assume linearity in the airloads, the 
assumption of linearity can probably be 
justified for many of the problems encountered 
on the rotor, in practice. The advent of 
nonlinear methods based on CFD solutions to 
the Euler and Navier-Stokes equations has 
provided new results that justify and define the 

limits of the linear models and may give 
guidance in developing improved and more 
practical unsteady aerodynamic models for 
future use in helicopter rotor blade airloads 
prediction, aeroelastic analysis and rotor 
design. At the blade element level, the various 
sources of unsteady effects can be decomposed 
into perturbations to the local angle of attack 
and velocity field. At low angle of attack with 
fully attached flow, the various sources of 
unsteady effects  manifest as moderate 
amplitude and phase variations relative to the 
quasi-steady airloads. At higher angles of 
attack when time-dependent flow separation 
from the airfoil may be involved, a 
phenomenon characterized by large overshoots 
in the values of the lift, drag and pitching 



2. THE AIRLOADS ON AN 
OSCILLATING AIRFOIL 

moment relative to the quasi-steady 
 stall  values, may occur. 

     One important parameter used in the 
description of unsteady aerodynamics und 
unsteady airfoil behavior is the reduced 
frequency, k, defined as ( V2/ck ⋅ )ω= , where 
ω  is the angular frequency, c is the chord of 
the airfoil and V is the flow velocity. 
According to the dimensional analysis, the 
resultant force, F, on the airfoil chord c can be 
written in functional form as 

    The oscillatory motion of the airfoil can be 
decomposed into contributions associated with 
angle of attack which is equivalent to a pure 
plunging motion (fig. 2) and contributions 
associated with pitching (fig. 3).  
 

h& 

( ) ( )k,MRe,fcV/F 22 =ρ . For  the flow 
is steady and for  the flow can be 
considered quasi-steady, that is, unsteady 
effects are generally small. Flows with 
characteristic reduced frequencies above of 
0.05 are considered unsteady. 

0k =
05.0k0 ≤≤

    For a helicopter rotor in forward flight (fig. 
1), the reduced frequency at any blade element 
can’t be exactly calculated, but a first order 
approximation for k, can give useful 
information about the degree of unsteadiness.  
 
 
 
 
 
 
 
 
 

Fig. 1 Main Rotor 
    The approach to modeling of unsteady 
aerodynamic effects through an extension of 
steady, 2-D thin airfoil theory gives a good 
level of analysis of the problem and provides 
considerable insight into the physics 
responsible for the underlying unsteady 
behavior. The Laplace’s equation for 
incompressible flow is eliptic, therefore the 
unsteady aerodynamic theories cannot be 
obtained in a corresponding analytical form. 
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Fig. 2 Plunge Velocity 
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    A plunge velocity  produces a uniform 
velocity perturbation w, that is normal to the 
chord,  and the pitch-rate term 
produces a linear variation in normal 
perturbation velocity.   
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Fig. 3 Pitch Rate 
    For a pitch rate imposed about an axis at “a” 
semi-chords from the mid-chord, then 

, so that the induced 
chamber is a parabolic arc.  
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    The problem of finding the airloads on an 
oscillating airfoil was solved by Theodorsen, 
who gave a solution to the unsteady airloads 
on a 2-D harmonically oscillated airfoil in 
inviscid, incompressible flow, with the 
assumption of small disturbances. Both the 
airfoil and its shed wake were represented by a 
vortex sheet with the shed wake extending as a 
planar surface from the trailing edge 
downstream to infinity. The assumption of 
planar wake is justified if the angle of attack 
disturbances remain relatively small. As with 
the standard quasi-steady thin airfoil theory, 
the bound vorticity, bγ , can sustain a pressure 
difference and, therefore, a lift force. The 
wake vorticity, wγ , must be force free with 
zero net pressure jump over the sheet. 
According to the Theodorsen’s theory, the 
solution for the loading bγ  on the airfoil 
surface under harmonic forcing conditions is 
obtained from integral equation 

( ) ( ) ( )
∫∫
∞

−
γ

π
+

−
γ

π
=

c 0

w
c

0 0

b dx
xx

t,x
2
1dx

xx
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2
1t,xw (1)

where w is the downwash on the airfoil 
surface. At the trailing edge, ( ) 0t,cb =γ , and 

the airfoil circulation ( )tΓ  is given by 

                             
 (2) ( ) ( )∫ γ=Γ

c

0
b dxt,xt

    So long as the circulation about the airfoil is 
changing with respect to time, the circulation 
is continuously shed into the wake and will 
continuously affect the aerodynamic loads on 
the airfoil. For a general motion, where an 
airfoil of chord  is undergoing a 
combination of pitching (  and plunging 

 motion in a flow of steady velocity V, 
Theodorsen’s solution for the lift coefficient 
and pitching moment coefficient 
corresponding to mid-chord,  are 
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where a is the pitch axis location relative to the 
mid-chord of the airfoil, measured in terms of 
semi-chord and  is the 
complex transfer function (known as 
Theodorsen’s function) which accounts the 
effects of the shed wake on the unsteady 
airloads. 
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with  being Bessel functions of 
the first and second kind, respectively (fig. 4).
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Fig. 4 Bessel Functions 

 The Hankel functions in above expression are: 

                        
(4)   

The real and imaginary parts of  function 
are plotted in fig. 5. 
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Fig. 5 Theodorsen’s Function 

    It could be appreciated that  function 
serves to introduce an amplitude reduction and 
phase lag effect on the circulatory part of the 
lift response compared to the result obtained 
under quasi-steady conditions.  

( )kC

This effect can be seen if a pure oscillatory 
variation in angle of attack is considered, that 
is, tie ωα=α , so the circulatory part of the 
airfoil lift coefficient is given by 
         ( ) ( ) ( )[ kiGkF2kC2 +απ=απ=α ]       (5) 
For , the steady-state lift behavior is 
obtained, that is  is linearly  proportional to 

. As k is increased, the lift plots develop into 
hysteresis loops and these loops rotate such 
that the amplitude of the lift response (half of 

the peak-to-peak value) decreases with 
increasing reduced frequency. These loops are 
circumvented in a counterclockwise direction 
such that the lift is lower than the steady value 
when  α  is decreasing with time (i.e., there is 
a phase lag). For infinite reduced frequency 
the circulatory part of the lift amplitude is half 
that at  and there is no phase lag angle. k = 0

         Pure angle of attack oscillations 

    For a harmonic variation in α , that is 
tie ωα=α , the lift is 

( ) ti2 e
V
bi

2
1kCbV2L ωα⎥⎦

⎤
⎢⎣
⎡ ω+πρ=

            
(6)   

or, in terms of the lift coefficient, the results is 

( )[ ] ti
l ekiiGF

bV
Lc ωαππ

ρ
++== 22

          
(7)    

The term inside the square brackets can be 
considered the lift transfer function, which 
accounts for the difference between the 
unsteady and quasi-steady airloads. 

 
Fig. 6 Normalized Lift Amplitude 

    The first term inside the brackets is the 
circulatory term and the second term is the 
apparent mass contribution, which is 
proportional to the reduced frequency and 
leads the forcing by a phase angle of . The 
noncirculatory or apparent mass terms arise 
from the 

0k =

lc
α 2/π

t/ ∂φ∂  term and account for the 
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( )[ ] ti2
l e

b
hkGiFk2c ωπ−−π=

pressure forces required to accelerate the fluid 
in the vicinity of the airfoil.          

(9) 
             

The normalized lift amplitude is     The complete term inside the square 
brackets can be considered as the lift transfer 
function. The circulatory part of the lift 
response leads the forcing displacement h by a 
phase angle of . Also, the apparent mass 
force leads the circulatory part of the response 
by a phase angle of  or the forcing by a 
phase angle of 

( )
22
kiiGF

cl ++=
απ         

(8) 
                   
    The lift amplitude and phase of lift for pure 
angle of attack oscillations are presented in fig. 
6 and fig. 7, where the significance of the 
apparent mass contribution to both the 
amplitude and phase can be appreciated. 

 

2/π

2/π
π . The corresponding pitching 

moment about mid-chord for this case is 
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    The results are plotted as the first harmonic 
normalized amplitude of the lift and pitching 
moment about the ¼-chord and their 
corresponding phase angles as functions of 
reduced frequency. 

        Pitching oscillations 

   For harmonic pitc oscillations, additional 
terms involving pitch rate α  appear in the 
equations for the aerodynamic response. The 
forcing is given by 

&

tie ωα=α  and the pitch 

rate by 
 

tiei ωαω=α& . In this case, the lift 
coefficient is 

Fig. 7 Phase Angle 
    At lower values of reduced frequency, the 
noncirculatory terms dominate the solution. At 
higher values of reduced frequency, the 
apparent mass forces dominate. 
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        Pure plunging oscillations 

    For a harmonic plunging motion such as be 
contributed by blade flapping the forcing is 

tiehh ω=  so that tiehih ωω=&  and 

    The lift amplitude initially decreases with 
increasing k because of the effects of the shed 
wake and then, for  begins to increase, 
as the apparent mass forces begin to dominate 
the airloads. This is also shown by the phase 
angle, which exhibits an increasing lead for 

. 

5.0k >

ti2 ehh ωω−=&& . Substituting into the expression 
for the lift and solving for the lift coefficient 
gives 

3.0k >



    Von Karman and Sear analyzed the problem 
of a thin airfoil moving through a sinusoidal 
vertical gust field, where the gust can be 
considered as an upwash velocity that is 
uniformly convected by the free stream. The 
forcing function in this case is 

            
( ) ⎟⎟
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tsint,xw g
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where gω is the gust frequency. If the gust is 

referenced to the airfoil leading edge, then 
 and  becomes ( t,xwg )0x =

( ) ( )tsint,xw gg ω=  and if the gust is 

referenced to the mid-chord, then  
and 

2/cbx ==  
Fig. 8 Sear’s Function 

    In terms of Bessel functions, Shear’s 
function is given by 
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Therefore, The terms of real and imaginary parts are 
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which is equivalent to a phase shift. In this 
case the lift coefficient can be written as 
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If the gust is referenced to the leading edge of 
the airfoil, the function will be called  an 
can be written as 

                    
( )gkS S ′where  si known as Sear’s function and 

the gust encounter frequency, , is given by gk ( ) ( ) ( )
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    (16)                            
    and  is the wavelength of the gust. gλ

The two results are plotted in Fig. 8.The 
peculiar spiral shape of the S transfer function 
arises only when the gust front is referenced to 
the mid-chord of the airfoil. 
 

CONCLUSIONS 
    Theodorsen’s lift deficiency approach has 
found use in many problems in both fixed-
wing and helicopter aeroelasticity. However, 
for a rotor analysis, Theodorsen’s theory is 
somewhat less useful because the nonsteady 
value of velocity at the blade elements, 
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( )ψ= ,yUV T , that means that the argument k 
(the reduced frequency) is an ambiguous 
parameter. Wagner has obtained a solution for 
so-called indicial lift on a thin airfoil 
undergoing a transient step change in AoA in 
an incompressible flow. The variable s 
represents the distance traveled by the airfoil 
in semi-chords. The apparent mass 
contribution for a step imput appears as a 
Dirac-delta function . In Wagner’s 
problem, the aerodynamic center is at mid-
chord (at ) and moves immediately to the 
¼-chord for . Although the Wagner 
function is known exactly, its evaluation is not 
n a convenient analytic form, therefore it is 

usually replaced by a simple exponential or 
algebraic approximation. 
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