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1. INTRODUCTION 
 

Reaction–diffusion systems are 
mathematical models which explain how the 
concentration of one or more substances 
distributed in space changes under the influence 
of two processes: local chemical reactions in 
which the substances are transformed into each 
other, and diffusion which causes the substances 
to spread out over a surface in space. This 
description implies that reaction–diffusion 
systems are naturally applied in chemistry. 
However, the system can also describe 
dynamical processes of non-chemical nature. 
Examples are found in biology, geology and 
physics and ecology. The nonlinear reaction-
diffusion systems are the general form: 
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The Brusselator is a theoretical model for a 
type of autocatalytic reaction. The Brusselator 
model was proposed by Ilya Prigogine and his 
collaborators at the Free University of Brussels. 
The Brusselator is originally a system of two 
ordinary differential equations as the reaction 
rate equations for an autocatalytic, oscillating 
chemical reaction,  [2,3,4]. In many 
autocatalytic systems, complex dynamics are 
seen, including multiple steady states, periodic 
orbits, and bifurcations. The Belousov - 
Zhabotinsky reaction [2,3,4] is a generic 
chemical reaction in which the concentrations of 
the reactants exhibit somewhat oscillating 
behaviour.  

To obtain the Brusselator model in systems 
(1) we denote by: )1(1 +−= Ba , 01 =b , Ba =2 , 

02 =b , yxyxf 2),( = , Alg =)(1 , 02 =g  where 
A  and B  are positive constants. 

In particular, the Brusselator model 
describes the case in which the chemical 
reactions follow the scheme: 
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where A, B, D, E, X, and Y are chemical 
compounds. Let )(tx  and )(ty   be the 
concentrations of X and Y, and assume that the 
concentrations of the input compounds A and B 
are held constant during the reaction process.  

 
2. THE DYNAMICAL SYSTEM 

 
The dynamical system which models these 

processes is: 
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We are proposing to study the stability and 
the existence of limit cycles for this dynamical 
system making a discussion about the real, 
positive parameters A and B. The main aim is to 
evaluate what are the values that lead us to 
obtain an attractor solution. 

For this it is a must to find the equilibrium 
point of the system (2), by computing the 
following system: 
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We’ll find that the equilibrium point is: 
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We are interesting about the behaviour of the 
null solution. For the stability study of the 
solution we have to make the translation to 
arrive in the origin, so: ** , yyYxxX −=−= .  

The new form of the system (2) is:  
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(4).  

Because ),( ** yx is the solution of system (3) 
is obtained the following system:  
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Which has the equilibrium point in origin 
)0,0(),( ** =YX .  

The stability study is made using the method 
in the first approximation. So, we have: 

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

∂
∂

∂
∂

=

Y
g

X
g

Y
f

X
f

yxJ ),(  

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−−−−−−−

+++++−
=

AYXYAAY
A
BXXYB

AXXAAYX
A
BXYB

22222

22221

2

22

 

The Jacobi matrix in the equilibrium point 
)0,0(O  is  
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This is equivalent with the linear 
homogeneous system: 
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The characteristically polynomial is: 
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We’ll study the solutions’ stability taking 
into account the type of the characteristically 
polynomial’s solutions. Because the product of 
these two roots is 2A , which is always a positive 
number, the study is made for the discriminant 
and the trace of the matrix H : 
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The characteristically equation roots  are: 
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3. STABILITY ANALISYS 
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We consider the following cases: 
Case 1. If 2)1(0 −<< AB , implies that: 
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negative and different: 212,12,1 ,0, λλλλ ≠<∈ R . 

Results that the equilibrium point ⎟
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A
BA,  is an 

attractive node non degenerate, the system is 
asymptotically stable. The phase portrait is:  

 

Case 2. If 2)1( +> AB , implies that: 
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In this case the roots are real, positive and 
different: 212,12,1 ,0, λλλλ ≠>∈ R . Results that 

the equilibrium point ⎟
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non degenerate, the system is unstable. The 
phase portrait is:  

 

Case 3. If 2)1( += AB , implies that: 
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In this case the roots are real, positive and equal: 
212,12,1 ,0, λλλλ =>∈ R . Results that the 
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degenerate after the line Axy = , the system is 
unstable. The phase portrait is:  

 

Case 4. If 2)1( −= AB , implies that: 
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In this case the roots are real, negative and 
equal: 212,12,1 ,0, λλλλ =<∈ R . Results that the 
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BA,  is an attractor node 

non degenerate after the line Axy −= , the 
system is asymptotically stable. The phase 
portrait is:  

 



Case 5. If 22 )1(1 +<<+ ABA , implies that 
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with the imaginary part positive RC \2,1 ∈λ , 
0)Re( 2,1 >λ . Results that the equilibrium point 
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Case 6. If 1)1( 22 +<<− ABA , implies that 
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with the imaginary part negative RC \2,1 ∈λ , 
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Case 7. If 12 += AB , implies that 
⎩
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0
0

xTrF . In 

this case the roots are complex, with the 
imaginary part null RC \2,1 ∈λ , 0)Re( 2,1 =λ . 
We have:  )()(2,1 BiB ωμλ +=  where 0)( =Bμ  

and  0)( >= ABω  and  .0
2
1 ≠=

dB
dμ

 Results 

that the Hopf theorem’s conditions [5] are 
fulfilled for these values of parameter B .  
The new matrices form of the system (5) is: 
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With 
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For the eigenvalue iA−=λ  we have the 

vector: ⎟
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iAqqqq , and for the 

eigenvalue iA=λ  we have the vector: 
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random numbers. A choice for the vector q is 
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We introduce a new variable z, using the 

diffeomorphic transformation: 

qzqzYX ⋅+⋅=),( . In this case it is obtained: 
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Compute the new function in the new variables: 
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For B  we evaluate the expression: 

 
The trajectory is a rotating ellipse. Next 

we’ll determine the equation of the trajectory 
corresponding to the system described above. 
Making the ratio between 'X  and 'Y  from the 
linear system, we obtain the differential total 
exact equation: 

0)(])1[( 222 =++++ dYYXAdXYAXA  
By integration it is obtained the equation of 
trajectory: 
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The first coefficient of Liapunov for B  is a 

real number and it is defining by  
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