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Abstract: In this part we continue the presentation from part | . The present paper demonstrates that this
class of " max-stable’’ distributions is made up of distributions with extreme values and each max-stable
distributions matches one of the parametric forms corresponding to the distributions known as Gumbelle,

Frechet, Weibull. In the end we present an important result for (g,),independent random
variables,identically and normally distributed, the series of random variables (M) ,, weakly converges

to a Gumbell allotment.
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1. THEOREM OF EXTREME TYPES
Theorem 1.2

May M, =max(g,€,,....,,) Where g are
independent and identically distributed random
variables. If a, >0 and by, constants and

Pa,(M,—b,) £ x)——G(x) (1.1)
For some nondecreasing G functions, then
G coincides with one of the three types of
extreme values previously defined.
Reciprocally, each G distribution function
of the extreme value type which appears as a
limit of type (1.1) is unique distribution
function for function ;.

Proof

If (1.1) is valid, Theorem 3.1 shows that G
is max-stable and consequently from theorem
1.1 is of extreme value type. Reversibly, if G
is of extreme value type, is max-stable from
theorem 1.1 and theorem 3.1(b) shows that
Ge D(G).

If 81,82,... not

independent, but M, =max(g,€,,...,€,) has

are necessarily

an asymptotical distribution G in the bearing
of (1.4), then (3.1) is true for k=1, where F,

is distribution function of M. If one can

show that if (3.1) is true for k=1, then it is
true for all k, so it will result that G is max-
stable from theorem 3.1 (a) and as a result G is
extreme value type.

Thus our focus when considering dependent
cases will consist only in showing that under
the correct assumptions, the truth from (3.1)
for k=1 implies the truth from (3.1). For all k,
from where, again, it results the Theorem of
extreme types.

Coming back to the case independent and
identically distributed random variables we

note that theorem 1.1 assumes that
a,(M,—-Db,) has a nondecreasing limit
distribution function G and than it

demonstrates that G must have one of the three
presented forms. It is easy to build the



sequences {g,}, independent and identically

distributed random variables for which there is
not such a G. in order to see an easy example,
for this case it is convenient to use the notation

Xg =sup{X; F(X) <1}(<e0).

That means that F(X) <1 for all X<Xg and
F(X)=1 for all X=Xg. We assume that each
€, has a distribution function which is such as
Xg <oo and thus F has at Xg a continuity
point i.e. F(xg_)<1=F(xg). Then it results
that if {u,} is
P{M,<u,}—p, then p=0 or 1. Thus
iftP{a,(M,—-b,))<x} - G(x), it

any sequence and

follows

taking a up, =Xy by, that G(x)=0 or 1 for
an
each X, so that G is nondecreasing.

2. CONVERGENCE OF P{M, <u,}

We have taken into consideration
convergence of the probabilities of the form
P{a,(M,—Db,) < x} which can be rewritten as

X
P{M, <u,}, where u,=u,(X)=—+b,.
an
The convergence was asked for all X. On the
other hand, we are interested in considering

the sequences {u,} which can be non

dependent on any parameter X or can be
functions more complicated than the linear one
considered above.

The next theorem is almost trivial in the
context  independent and  identically
distribution but it is also very important and
will be extended through important means in
order to be applied (stationary) to the
dependent sequences and continuous time
processes.

Theorem 2.1
May {e,} a selection of independent and

identically distributed random variables. May
0 < T<+co with the assumption that if {u,} is

a sequence of real numbers for which:

lim n(1-F(uy))=1 2.1
N—>o0

Then
lim P{M,<u,}=e¢" (2.2)

N—co

Conversely, if (2.2) holds true for a T with
0 <t < +eo then the relation (2.1) it is true.
Proof

GC=>’7
If 0 <1t <400 s0 that:
P{Mp<u,j=F n(un) = {1 - (1 —-F(u, )}n (2.3)
According to the hypothesis, from

lim n(1-F(u,))=1 = there is N, so that any
N—>oo

n>n,
In(1—F(uy))-1<r
—r<n(l-F(uy))-t<r|+1
t—r<n(l-F(ug))<r+1:n

T - Fuy) < e
n n

r+7

=1

1+ e Ry <1+
n

- R <=
n n

LAY S TIPS L
n n n n

Therefore

P(M, <u,) :(1—1+0[1D -
n n

75
lim| ——+0] — | |'n
lim P{M, <u,}=1"=¢™=\ " N

n—oo

lim (—r+n-0(1n
— en—><>o n — e—’C .
‘G<:7,

From
lim P(M, <u,)= lim{l-(1-Fu,)}" =
N—0c0 N—eo

=e "= (1-F(u,)=0
For 1-F(u,) limited by O for the
sequence {ny} according to the relation (2.3)

from which it results:
lim P(M, <upy)=0

N—oo
InP(M,<up)=Ine '=-1 }:
InP(M,, <up)=nln(1-(1-F(u,)))
nin(1-(1-F(up)))— -t
n(1-F(up))1+0(1)) -1
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Finally if T=c and (2.1) is true but (2.2)
is not true, there must be a sequence {ny} so
that P{M,<un}—e ' while k—e for
T'< oo . But the relation (2.2) implies (2.1) with

Nk replacing n SO that
N (1-F(up))— T'<eo, contradicting the
assumption that (2.2) is true for T=oo.

Similarly (2.2) implies (2.1) when T=-co.

Corollary 2.2

(1) M, = Xg (£ +o0) with probability 1 for

N—00,

(2) If X <woandF(x__)<1 and if for the
sequence {u,}, P(M,<u,)—p then p=0
or p=1.

Proof

If A<Xg (o), 1-F(X)>0 so that (2.1) is
true for u,=A,T=c and from (2.2) we
lim P(M, <A)=0. But

N—oo
P(M,>xg)=0 for any n, from where it

obtain

results M, = Xg in probability. As {M} is
monotonous and convergent it results that
M, — Xg and point (1) is proved.

Assuming that Xg <o and F (XF, )<1 . Let
the sequence {u,}so that P(M,<u,) —p.

As pel0,1] we can write p=e F,0<T<oo

and from the

n(l-Fu,))—r.
If u, < Xg for an infinite number of values

theorem 2.2 we obtain

of nand because
l—F(un)Zl—F(xF_)>0wehave T=co and

U, = Xg and we obtain

n(l—F(uy))=0

n(l-F(u,))—7
Therefore T=co or T=0 and consequently
p=0 or p=1 Q.E.D.

We go on bringing into discussion the
interest domain of distributions with extreme
values. The normal selections are important
and consequently it is demonstrated that
theorem 2.1 can be used directly to obtain
asimpthotic laws of type Tip I for normal
independent and identically  distributed
selections.

We consider J the normal standard
distributive function and @ the density
function corresponding to the mention that
there will be repetitively used the known
relation of connection:

1—J(u)z$ when U — oo,

Theorem 2.3

If {e,} 1s a normal selection independent
and identically distributed (standard) of
random variables, then the asimpthotical
distribution of M, =max(g;,€,,...€,) 1s of

} results that t=0.

(2.4)

Type I and
P{a,(M, —b,) < x}— exp(— e‘X) (2.5)
Where a, =(2In n)l/ % and

b, =(2Inn)"? —%(2111 n)Y2(Inlnn+In4m)

Proof
We choose tT=€* in relation (2.1), then

1—J(un):1e‘X le—x-un
n — n
1= 3(uy) = 2| (uy)

n
looking up its logarithm we obtain:

—1 and by



—Inn-X+Inu, -In®(u,) —0
Ua

- g2

(I)(Un) - \/%
2

:>—1nn+1nun+%1n2n+”7”—>o (2.6)

2

As — 1 we obtain

2lnn

2Inu,-In2-In(Inu) - 0=
Inu, :%(ln2+ln(lnu))+0(l) (*)

Using (*) in (2.6) we obtain

u, == +h, +9(ar‘,1).
an
From (2.2) we have

P(M, <u,)— exp(—e ™) where T=¢
P{M n < £+ by, + G(agl )} - exp(— e_x) or

Play (M, — by )+6(1)< X} — expl-
(2.5) Q.E.D.

—X

e_x) that is
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