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Abstract: In the present paper we give the transformations for the coefficients of an N-linear

connection on dual bundle of k-tangent bundle, T M, by a transformation of a nonlinear connection on
*k

T"°M |, k>2,ke N. Starting from the notion of conformal metrical d-structure we define the notion of

general conformal metrical N-linear connection on dual bundle of k-tangent bundle.We determine the set of
all general conformal metrical N-linear connections,in the case when the nonlinear connection is fixed and
we find important particular cases. Finally we find the transformations group of these connections.
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1. INTRODUCTION (k>2,ke N)
The notion of Hamilton space was
introduced by Acad. R. Miron in [5],[6].The

be the dual bundle of k-osculator
bundle (or k-cotangent bundle), where the total

. . space is
Hamilton spaces appear as dual via Legendre ok skt .
. T"M=T"MXT M. (1)
transformation, of the Lagrange spaces. . A
The differential geometry of the dual bundle of Let (xl, Py p, ), ((=12,.,n), be the
k = osculator bundle was introduced and studied  local coordinates of a point
by Acad. R. Miron [10]. u= (x,y(l),...,y(k’l),p)e T*M in a local chart

In the present section we keep the general
setting from Acad. R. Miron [10] and
subsequently we recall only some needed
notions. For more details see [101

1 €7

on T™*M .The change of coordinates on the
manifold 7"“M is

Let M be a real n-dimensiona " manifold

and let (T*kM’”*k’M)a



X =§i(x1,...,x"),det ax‘ %0,
ox’

s _ %)
y EAVIRAE (2)
s oy

~(k=1)i _ y (1)) y (k=1);
(k—l)y o Y+ +(k—1)ay(k_2)j J
pi afl p/'a

We denote with N a nonlinear connection on
the manifold 7%M, with the coefficients

7 b 0,0

N; (x,y(l),...,y(k_l),p)), (i,j = 1,2,...,71).
The tangent space of T™M in the point

*k . . .
ueT "M js given by the direct sum of vector
spaces

T(r*M)=N,, ®N,, ®..®

" 4)
®N,,,®V,_ W  YueT"M
A local adapted basis to the direct
decomposition (4) is given by
o 0 o )
{gv @}(l)i [XXED) 5y(k_1)i :g}ﬂ (l = 192:"'3”)9
: ()
where
6 0 .0 .0 d
—=— N/ ——- ’ -+ N, —
& o' W oy (k=) " gylhthi i p,
o 0 ;9 ;0
@/(l)f ay(l)f ) ay(2)/‘ (k-2) ! ay(k—l)/
.............................................................. (6)
o _ 0
5}}(1{4)1’ - ay(k—]): >
9 _9
@i apl

Let D be an N —linear connection on 77*M,
with the local coefficients in the adapted basis

DF(N)=(Hi jh,(ca?; e f‘h}(azl,...,k—n (7

2THE SET OF THE
TRANSFORMATIONSOF N-LINEAR
CONNECTIONS

Let N be another nonlinear connection on
T M, with the local coefficients

(](7)/ ,-(X,y(l),...,y(k—l),p),,..,(lgv:)f i(x,y(l)’m’y(k—l),p),

N; (x,y(l),...,y(k_l),p))(i,j = 1,2,...,}1).
Then there exists the uniquely determined

tensor fields (A)f e (r*M), (a=1,..k-1)

and 4, € 7 (T"*M ), such that

(8)

and

are given, then (N_)i j,(a= 1,...,k—1),

respectively ]Vi/, given by (8) are the
coefficients of a nonlinear connection.

Theorem 1 Let N and N be two
nonlinear connections on T*M, (k =2, ke N ),
with local coefficients

({Xj l.(x,y(l),...,y(k’l),p),...,(lg\_fl)j [(x,y(l),...,y(k’l),p)

N, (x,y(l),_“,y(k—l),p))’({lv)j '

‘ i(x,y(l),...,y(k_l),p),ﬁ,-j (x,y(l),...,y(k_l),p)j

=

—
=~

,1)

i,j=12,..,nrespectively.

Jh
If DI'(N)= [H" _,h,(c; #C j and

. — Jh
Df(ﬁ)z(ﬁ" jh,(c_)’ wC J (a=1,...k-1)

are the local coefficients of two
N—, respectively N -linear connections, D,

respectively D on the differentiable manifold
T*M,(k>2,ke N), then the transformation
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N — N, given by (8) of nonlinear connections
implies for the coefficients of the N -linear

N
connection DF(]V)Z [ﬁi jh,(C_)l nC ],the

following relations

H =H +A4" |C' +N' C'  +.+
Y A (I 0] n 7@
+N', C' +N N, C +.+

M "3 ! (k-3)
)
+N..N C |+
(1) @)1
(k-2)
+4" |Cc' +N  C 4.+ N' C' +.+N..N
@ e m "6 (k=3) " () 00 6
(k=3)

o+ A’”{C".+N’ c' |+
(k=3) I e=2) ™ ) " (k1) Y
m i =i i I i
Ay 1 Cy e G T & vt Sy
c',=c',.C. "=c’,
k=1 ¥ (k-1) Y g s
hoo_
(3 i =0

Ay =00, j,h=1.2...,n),

w |n

where denotes the 4 — covariant derivative

with respect to DI(N).

Theorem 2 Let N and N be two
nonlinear connections on T*kM,(k =2, ke N),
with local coefficients

{};j l.(x,y(l),...,y(k_l),p),...,(]{Yl)j l.(x,y(l),...,y(k_l),p)

Nij (x’y(l)o"':y(k_l)op))’(]?)J i(xoy(l):"':y(k_l)ﬁp)v--:

=l

j(xay(l)a"'ay(k71)5p)aﬁl:f (xay(l)a"'ay(k%% p)j
i,j=12,..,n,respectively.

. Jh
If DI'(N)= (Hi y (c) nC } and

i

Jh
DT(N)z(ﬁfjh,(C—) wC, ] (@=1,..,k-1)

are the local coefficients of two
N—, respectively N -linear connections, D,
respectively D on the differentiable manifold
T*M,(k>2,ke N), then there exists only one

system of tensor fields



() 777y TG T ey

Jjh
(A’ A" A B D D' D ] A", =0,

such that
(]V)i = (N)i j_(A)i S@=1,,k=1), where “ '” denotes the 4 — covariant derivative
N, =N;—- 4, with respect to DI'(N).
" . L In the particular case when we have the same
H ,=H +4" ,|C +N ,C +..+ :
W L e nonlinear connection N, that is A" =0,
+ N/ "N N C o+ (@=1,...,k=1),(k=2,ke N) and 4. =0, we
(k=2) ") T " 6 _ . N
’ obtain the set of transformations of N-linear
N N'+.+N' N, |C' +.. connections corresponding to the same nonlinear
M =) (k=3) ) "6t connection N given by

i pri i
HSl'iHS/_BS/"

(10) — ) ) (11)
— i i — _ >
AN.N + (g) . g} 5 (9) g (@=1,..k=1),(k>22,ke N)
1 @) k-1 Ci=Ci_pi.
(k-2)

3. GENERAL CONFORMAL
A CAN' O+ N C 4 4NN C |+ METRICAL N-LINEAR CONNECTIONS
@ 7@ M 76 (k=3) 7 (k1) O 06D INTHE HAMILTON SPACE OF ORDER

(k-3) k,k>22,ke N

Let H""=(M,H) be a Hamiltonian
space of order k,k>2,ke N, and let N be the

(o) Iy s s TR e cannonical nonlinear connection of the space
| H®" ([10], p.192).
C . =C +4" |C' +N  C 4.+ We  consider the adapted basis
oY oY o 1e™ 0 "6
o 0 o o . .
@’W,W’E and its dual basis

+N" C' +.4N-..N + (o', ", "V, op,} determined by N and
by the distribution W, . Let

) 1 0°H
m i r i g!](x9y(1)""’y(kil)’p):_

+...+(A jLC +N", C'. }+ 2 dp,dp;

' be the fundamental tensor of the space H ™

£ A" C LD [10].

(12)

The d-tensor field g” being nonsingular

c' ,=c' +4 Cc' ~-D", IV ,
k2) ¥ 2) V) Ty Y ) V7 on TkMZTkM—{O} (where 0 is the nul
C' —c' _pi ¢ i=ci_pi section of the projection 7 ) there exists a d-

W) Y ) T ) VTS ’ ’ tensor field g, covariant of order 2, symmetric,
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uniquely determined, at every point ue T M ,
by g,8" =/ (13)
Definition 1 ([10]) 4n

connection D is called compatible to the
fundamental tensor g" of the Hamiltonian

space of order k, H"" =M, H),
metrical if g"

N-linear

or it is
is covariant constant (or absolute
parallel) with respect to D, i.e.

y (@) ;
glj\h =0, 8 |, =0,g" |h: 0,(x=1,..,k-1)(14)
The operators of Obata's type are given by
i [/ *ij 1 i S ij
Q/ik _*(5/15 ghkgj) Q) :E(5h5/f+ghkgj)
(15)
Proposition 1 The operators of Obata's

type are covariant constant with respect to any
metrical N-linear connection, D

(@
er — 0 er — 0 QIV —
s = 0,82, | (Xh) = where
Q. =0Q7 |,=0Q7 "=

denote the /—,

covariant derivatives with respect to D,
(a=1,...k-1).

Let S,(T “Mm ) be the set of all symmetric

d-tensor fields, of the type (0,2) on 7" M,
k>2,ke N. As is easily shown, the relations

b€ S, (T M) defined by:
(a; = by )@)

_ sk
(DA, Y,y p)e F(TT M),
a6,y y D p) =

ij s
k—

= 2 y< 1)’p)b (e,

(@)
h
o | ,and|", v,— and w, —

for a.

(16)

% D))

is an equivalence relation on S, (T M ).
Definition 2 The equivalent class g of

S, (T “M )/ = to which the fundamental d-tensor
field g, belongs, is called conformal metrical d-

ok
structureon T M .
Thus

g=1{gl g;(x v,
e YT ”,p)

¥, p)=

:ezﬂ(vy glj(x,y(l) ,y(k—l),p),(17)
A0,y v D p)e F(T*kM)}.

Definition 3 An N-linear connection, D,
with local coefficients

DI'(N) =(H3h,g j,,,cﬂ’j, (a=1,.,k-1),

is called general conformal metrical N-linear
connection with respect to g if:

(@)
= Kijh’ 8 | (18)

i :(Q) P

()
where , | ,and|", denote the h—,v,— and

w, — covariant derivatives with respect to D and

K, (% gh’th are arbitrary tensor fields on
"M of the types (0,3), (0,3) and (2,1)
respectively, with the properties:
Kiih :Kjih’(% ijh Q ﬂh’Qy Qﬂ > (19)

(x=1,...,k-1).
Definition 4 An N-linear connection, D,
with local coefficients

DT(N) =(Hfjh,g ]h,C’hJ,(a =1,.,k=1),

for which there exists the I1-form @,



— i . (i . (k=1)i 2o
w=wdd'+o,0"" +..+ o ¥ +d p,,
M (k=1)
such that
(@)

L =20,8., 9. =W 9.,
gy|h hgy gg/ ’ h (al/; gzj (20)

g I'=2d'go0=1,..k—1,
(@)
where ,, |, and ", denote the h—,v,— and
w, — covariant derivatives with respect to D,
(a=1,...,k—1) is called conformal metrical N-

linear connection, with respect to the conformal
metrical d-structure g, corresponding to the 1-

form w and it is denoted by: DI'(N, w).
Proposition 2 If DI'(N, w)

= (Hi_jh,F)i jh,Cijhj (a=1,....k—1)are the local

coefficients of a conformal metrical N-linear

ak )
connectionin T M , with respect to the
conformal metrical structure g, corresponding

to the 1-form @, then
) @ y
gU\h =-2m,¢", g’ | ,=2m,8",
(@)
g’ '==2d&"g" a=1,..,k-1.

For any representative g’e ¢ we have
’_ A
Theorem 3 For g, =e™*g,, a conformal

metrical N-linear connection with respect to the
conformal metrical structure g, corresponding

xk
to the I-form w in T M, DU(N,w), satisfies
(@)
i ~ 2whgij9 8 |, =2d), 8ij»
(o)
g I'=2&"¢g,,a=1,.,k-1,
where &’ = w+dA.
Since in Theorem 3 @’ =0 is equivalent
to w=d(—A), we have
Theorem 4 A conformal metrical N-
linear connection with respect to g,
corresponding to the I-form w in

T™M, DT (N,w), is metrical with respect to

()
geg ie gy =g |,=g;'=0 ifand only if
w is exact.

We shall determine the set of all general
conformal metrical N-linear connections, with
respect to ¢, corresponding to the same
nonlinear connection N.

Let

0 0 0

DF(N):(HI.M,(CI) jh,C/hJ, (a=1,...k-1)

be the local coefficients of a fixed N - linear

0

connection D, where
(V68 AN (37, ),

(a) '
(x=1,., k=1, j=12,...,n)
are the local coefficients of the nonlinear
connection N . Then any N-linear connection,
D, with the local coefficients
Dr(N)z(H’[,-h,(c)" C.jhj,(OJ:l,...,k—l),can

Jjho i

be expressed in the form (11).

Using the relations (20), (11), (6) and the
Theorem 1 given by R.Miron in ([4]) for the
case of Finsler connections we obtain

0
Theorem 5 Let D be a given N -linear

0
connection, with local coefficients DI(N)

0 0 0

= {Hfjh,cf P ’Cl'jh} (@=1,..,k—1). The set of
(@)

all general conformal metrical N-linear
connections, with respect to g, corresponding to

the same nonlinear connection N with local
coefficients

DI'(N) :(H’[,-h,(c)" jh,cl.fhj,(az l,...k=1) is
given by

0
i i 1 im ir v
H, =H+—-g"(g , —K,,)+Q.X’,,

2 mj | h
(o)
0

1 im ir s
1h+5g (gm/ |h_(g) m/h)+Qs_'j(§) rh (21)

0

— 1

(@) Jh

i

0 0
_ L1 . y
c'=c’"+ Eg”” (g, I'-0,")+QLZ",

(@=1,..k-1)
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0
| ,.and |h

(@)
0

where 0,7 denote the h—,v,— and

0
w, — covariant derivatives with respect to D,

leh,(g)‘

K,j,,,(Q) in> Dy !

the types (0,3), (0,3) and (2,1) respectively, with
the properties (19), (¢ =1,....,k—1).

],h,Zl.jh are arbitrary d-tensor fields and

are arbitrary d-tensor fields of

Particular cases
1. If we take

K, = thg,.j,(Q) g =2, 8, (@ =1,...k=1),
a (@)

Qz‘j "= 250}1&/
in Theorem 5, we obtain
0
Theorem 6 Let D be a given N -linear
0
connection, with local coefficients DI'(N)=

0 0 0
{H’,h,C’ e J (a=1,...k—=1). The set of

all conformal metrical N-linear connections
with respect to g, corresponding to the 1-form

w, with local coefficients DI'(N,w)=

:[Hijh,c lh,C’h] (a=1,...k—1) is given by

0
i i |
Hjh =H' n+-g"(g
2 m |

(01)

- 2a)hgmj) + Q;Xih’

0
i

(@) = (C) Jjh (gmj | 2(62/; gmj) + le’, (g)x h (22)

. P .
C,-]h _ Cijl+7gmj(gmi |h_2whgml_)+Qf’rZ)éh’

(a=1,.,k=1),G,j,h=12,.,n),
@ o
| ,,and |" — and

where 0, denote the h—,v,

\
. . . . 0
w, — covariant derivatives with respect to D,

X’Jh,(Y) iz
(a=1,...k-1),

o=wd+o " +.+ & YV +d'dp,, is
M (k=1)

an arbitrary 1-form and € is the operator of

Obata's type given by (15).

2. 1f X, =1,

are arbitrary d-tensor fields,

»=2"=0, in Theorem 5

we have an example of general
conformal metrical with respect to g:

0
Theorem 7 Let D be a given N -linear
connection, with local coefficients

0 0 0 0
DIT(N)=| H' s, C’ 4Gl

(a=1,....k—1). Then the following N-
linear conection K, with local
coefficients

KT'(N) :(Hijh,(g jh,C’hJ (a=1,.,k-1),

given by (23) is general conformal
metrical with respect to .



0
i i 1 im
H) =Hn+—-g"(g ,

_Km )7
2 m./'lh s
(06)
i 0 1 zm
Cijh = Cijh+%gmj(gmi |h_ inih)>
(a=1,...k-1),
(g) 0
where , , |,.and |" denote the h—,v,
h

and w, — covariant derivatives with respect

0 .
to D, and K, (Q) a0y " are arbitrary d-

tensor fields of the types (0,3), (0,3) and
(2,1) respectively, with the properties (19),
(a=1,..,k-1).

3. If we take a general conformal metrical

0
N-linear connection with respect to ¢ as D, in
Theorem 5 we have

0 *k
Theorem 8 Let D beon T M a fixed
general conformal metrical N-linear connection
with respect to g, with the local coefficients
0

0
DT(N)= (H',h C’jh,C’hJ (a=1,.., k-1).

The set of all general conformal metrical N-
linear connections, with respect to g, with local

coefficients
DF(N){H"_,,,,(Q jh,C"’j (a=1,.,k=1) s
given by

H' —H QX

G n _C; h

Jjh
Ci

Q” Srh,(a ~k=1), (24)

= C.f"+ij.rZ sh
where X’jh,(g) L Jh

fields, (@ =1,...k—1).

are arbitrary d-tensor

4. 1If K, = (Q)ijh_Qy =0,(a=1,...,k-1)

[24

in Theorem 5 we obtain the set of all
metrical N-linear connection in the case
when the nonlinear connection is fixed,
result given in ([10]).

Theorem 9 The mappings determined by

(24), DT(N) — DT'(N) together ~ with  the
composition of these mappings is an abelian

group.
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