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Abstract: Modern control systems act in real environment, and must be able to handle problems of 
reference signal tracking and disturbance attenuation simultaneously. This paper highlights theory of the 
analysis of the robustness of the automatic control systems used in automatic flight control systems. 
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1. INTRODUCTION 
 

This paper is lean upon early work of the 
author dealing with analysis of the robustness 
of the automatic control systems in general [1], 
and on paper representing application of this 
theory to analyze stability augmentation 
system of the aircraft [2]. 

Control system is designed to work in real 
environment. The controller is often designed 
for the system with simplified mathematical 
model. Nonlinearities are often omitted or 
linearized and the controller is synthesized for 
the linearized system. However, controller 
works with the real nonlinear system. Sensor 
dynamics, actuator and motor dynamics are 
also simplified or neglected. Dynamics of the 
plant contains high frequency elastic 
oscillation modes, which can be neglected. 

The control system, which is able to work 
in real environment, is called for robust one. 
It means that controller is able to meet design 
requirements not only for the simplified plant 
model used during synthesis but for its family 
representing all possible plant models 
including both nonlinearities and high 
frequency dynamics. In this case control 
system has robust stability and robust 
performance. 

For instance, automatic flight control 
systems are designed to work also in extreme 
flight conditions, e. g. extremely high or low 

air temperature and pressure, load factors, 
maneuvers, turbulent air etc. Flight control 
system is able to meet all design requirements 
in any flight conditions. 

Mathematical description of the 
deterministic systems is given in [5, 6, 7]. The 
stochastic dynamical systems and signals are 
analyzed in [3, 4, 5, 7, 8, 9, 10]. In [4, 8, 9, 10] 
there are many applications of robust control 
and modeling robust control systems. In [10] 
an example of robust controller synthesis for 
fighter aircraft is presented when high 
frequency dynamics of the aircraft fuselage is 
added to that of the rigid one. In [13] 
mathematical models including static and 
dynamical ones are given. Part II. of [13] deals 
with modeling of stochastical systems, and 
with design of the robust dynamic controller. 

Chapter 3 gives more general interpretation 
of the mathematical models given for the 
SISO1 control systems and derives matrix 
equations for MIMO2 control systems. 

Chapter 4 shows loop shaping problem, 
which is about bounding sensitivity transfer 
function, and closed loop system transfer 
function, and gives some remarks on this 
problem. 

                                                             
1 Single Input – Single Output 
2 Multi Input – Multi Putput 



Chapter 5 is for defining mathematical 
models of the uncertainties playing active role 
during synthesis of the robust controller. 

Chapter 6 is dealing with robust stability of 
the control systems, i. e. giving mathematical 
models both for the additive and multiplicative 
uncertainties. This section also deals with 
derivation stability margins, which are very 
important quantitative measures during control 
systems’ analysis and design. 
 
2. DYNAMIC PERFORMANCES OF THE 

SISO SYSTEMS 
 
Block diagram of the SISO control system 

can be seen in Fig 1 [1]. 

 
Fig 1. Block Diagram of the SISO 

control system. 
 
In Fig 1: r(s) - reference signal, d(s) – 

external disturbance, n(s) – sensor noise, G(s) 
– transfer function of the plant, K(s) – transfer 
function of the controller, u(s) – input vector, 
y(s) – output signal. Using Fig 1 the output 
signal can be derived as: 

n(s)
K(s)G(s)

K(s)G(s)d(s)
K(s)G(s)

r(s)
K(s)G(s)

K(s)G(s)y(s)

+
−

+
+

+
+

=

11
1

1        (2.1) 

Let us introduce the following substitutions: 
 – open loop transfer function, K(s)G(s)L(s) =

K(s)G(s)
S(s)

+
=

1
1  – sensitivity transfer 

function, 
K(s)G(s)

K(s)G(s)T(s)
+

=
1

 – closed loop 

complementary transfer function (closed loop 
transfer function). From equations given above 
it is evident that 

1=+ T(s)S(s)            (2.2) 
For achieving prescribed reference signal 

tracking ability sensitivity transfer function 
S(s) should has small value in given frequency 
domain, i. e. open loop transfer function is 
large. For achieving necessary noise 

suppressing ability sensitivity transfer function 
S(s) must have small value in the frequency 
domain, in which external disturbance d(s) 
acts [4, 8, 9]. 

Sensor noises are said to be well damped if 
the closed loop transfer function T(s) has small 
values in the given frequency domain, i. e. 
open loop transfer function is also has small 
value. 
Bode diagrams of the sensitivity transfer 
function S(s) and the closed loop 
complementary transfer function T(s) can be 
seen in Fig 2. 

 
Fig 2. Bounds for )( ωjS  and )( ωjT  

 
In low frequency domain )S(jω  must be 

kept small, in high frequency domain its 
absolute value goes to unity. In low frequency 
domain )ωT(j  must be kept unit value, in 
high frequency domain is bounded for ’good’ 
noise suppressing ability. 

For the SISO control system these 
simultaneous requirements given above 
determine the shape of the open loop Bode 
diagram illustrated in Fig 3. In low frequency 
domain, in which reference signal and the 
disturbance act, open loop gain must be kept 
large. In high frequency domain open loop 
gain must be small for ’good’ noise 
suppressing ability. For the control of the gain 
and phase margins at the crossover frequency 
slope of the Bode plot is – 20 dB/decade. 
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Fig 3. Desirable shape of the open loop system 

Bode diagram. 
 

Summing up what has been said before: in 
the SISO control system nominal 
performances set limits on the size of the open 
loop gain  [1, 4, 8, 9]. K(s)G(s)L(s) =
 
3. DYNAMIC PERFORMANCES OF THE 

MIMO SYSTEMS 
 
Most of the control systems are MIMO ones 
and the state space method should be applied 
for its analysis and design. In this case all 

input signals are vectors. In the MIMO control 
system we deal with so-called transfer function 
matrices. For the evaluation of the size of 
matrices there is widely applied the matrix 
singular value method. For the MIMO control 
system eq. (2.1) may be rewritten in following 
manner [1, 4, 6, 8]: 
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The sensitivity and the closed loop 
sensitivity transfer function matrices can be 
determined as follows: 
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                            (3.2) 

Nominal performance criterions for the 
SISO and the MIMO control systems are 
summarized in Table 1. Subscript ’m’ denotes 
the largest singular values of the matrices [1]. 
 

 
Dynamic Performances of the SISO and MIMO systems     Table 1. 

 Low Frequency Domain High Frequency Domain 
 SISO MIMO SISO MIMO 

Reference Signal Tracking ⎢K(s)G(s)⎢ » 1 
or 

⎢S(s) ⎢ « 1 

σ(K(s)G(s))»1
or 

σm(S(s)) « 1 

 

 

Disturbance Rejection 
⎢K(s)G(s)⎢» 1 

or 
⎢S(s) ⎢« 1 

σ(K(s)G(s)) » 
1 
or 

σm(S(s)) « 1 

 

 

Noise Suppression 

 |K(s)G(s)| « 
1 
or 

|T(s)| « 1 

σm(K(s)G(s)) « 
1 
or 

σm(T(s)) « 1 



 
The transfer function matrices are functions 

of the complex frequency s, their singular 
values are frequency dependent ones: singular 
values determined for ωjs =  can be plotted 
versus frequency. Singular value frequency 
plots are generalizations of Bode magnitude 
plots for the MIMO systems. 
 
4. LOOP SHAPING OF THE CONTROL 

SYSTEMS 
 
It is known from control theory that dynamic 
performances of the feedback control systems 
can be translated into specifications on the 
sensitivity transfer function S(s) and the closed 
loop transfer function T(s). The control system 
design methodology based upon determination 
of the appropriate bounds on S and T called 
Loop Shaping. This procedure can be applied 
for multivariable systems when we shape 
singular values of matrices S(s) and T(s). Let 
us consider the feedback system block diagram 
represented in Fig 4 for the formulation of 
problem of the loop shaping [1, 4, 7, 8, 9]. 

Firstly, let us consider d(s) and n(s) for the 
inputs. Using Fig 4 – for the SISO control 
system – following equations will take place: 

[ ]
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Secondly, let us consider for the input 
reference signal of u(s). It yields to the 
following formula: 

)( )()(2 suss T TWZ =     (4. 2) 
 

 

Fig 4. Loop shaping of the feedback 
control system. 

In eqs. (4.1) and (4.2)  and  are 
weighting matrices that are used to bound S 
and T. Typical shapes for the S(s), T(s), 

 and  are given in Fig 5 [1]. 

sW TW

)(ssW )(sTW

 
Fig 5. Shapes for S and T and their weights. 

 
From Fig 5 following equations can be 

derived 
1)(   or  , (s) 1 ≤≤ − sss SWWS            (4.3) 

In control theory this inequality is known as 
the weighted sensitivity problem. 

Secondly, for the closed loop transfer 
function T(s) takes place the following 
inequality: 

1)(   or  ,  )( 1 ≤≤ − ss TT TWWT         

(4.4) 
This problem is known in modern control 

theory as the weighted complementary 
sensitivity problem. 

The simultaneous application and 
satisfaction of both constraints is called mixed 
sensitivity problem [1, 2, 5, 6, 7, 8, 9]. 
 

5. MODELLING OF UNCERTAINTIES 
IN CONTOL THEORY 
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Model uncertainty can be divided into two 

categories: structured and unstructured 
uncertainties. Structured uncertainty is the 
modeled one and has ranges and bounds on it. 
Unstructured uncertainty is the less-known 
one. We can assume that its frequency 
response lies between two bounds [1, 2, 5, 6, 
7, 8, 9, 10, 11]. 

Unstructured uncertainty can be modeled 
in two different ways. One can discuss 
additive or multiplicative uncertainties. Let the 
nominal system model is denoted by . 
The actual true system is defined by . 
The actual system can be modeled as sum of 
nominal system plus additive uncertainty 
model: 

)(sG
)(~ sG

)()()(~ ssGsG aΔ+=          (5.1) 
From eq. (5.1) the model of the additive 

uncertainty can be derived as: 
)()(~)( sGsGsa −=Δ          (5.2) 

Additive uncertainty can be represented 
using eq. (5.1) and it can be seen in Fig 6. 

 
Fig 6. Block diagram of the additive 

uncertainty model. 
 

Additive uncertainty model is often used in 
automatic flight control system to model 
aeroelastic high frequency dynamics of the 
aircraft fuselage [2, 5, 12, 13]. Additive 
uncertainty represents absolute error in the 
model e.g. omitted high frequency elastic 
motion dynamics. 

In multiplicative uncertainty case one can 
find the true model of the system as: 

( ) )( )(1)(~ sGssG mΔ+=                     (5.3) 
Multiplicative uncertainty can be built 

using eq. (5.3). It can be represented at the 

plant input or at the plant output. Block 
diagram of multiplicative uncertainty can be 
seen in Fig 7. 

 
Fig 7. Block diagram of the multiplicative 

uncertainty model. 
‘a’ – uncertainty at the plant input, ‘b’ – 

uncertainty at the plant output 
 

Multiplicative uncertainty represents 
relative error in the model and it is used more 
often than additive one. 
 

6. ROBUST STABILITY OF CONTROL 
SYSTEMS 

 
Let us consider a feedback control system 
containing a plant and the compensator 
designed for the nominal plant . The 
compensator is robustly stabilizes the system if 
the closed loop control system remains stable 
for the true plant 

)(sG

)(~ sG . 
Robust stability conditions can be derived 

from variation of the Nyquist stability criterion 
or from the so-called small gain theorem. This 
theory states that, for the closed loop stability 
the open loop gain )()( sKsG  is small. 

The small-gain theorem guarantees internal 
stability. It means that all possible closed loop 
transfer functions are stable and all internal 
signals are bounded for bounded inputs. 

From Chapter 2 it is known that for good 
command performance and for good 
disturbance rejection in the low frequency 



domain the open loop gain must be larger than 
one (see Figure 3). Hence, the control system 
satisfying this theorem will have poor dynamic 
performances. Inspite of this it is possible to 
apply the small-gain theorem for control 
systems with additive and multiplicative 
uncertainties. 

The small-gain theorem is mainly used for 
answering the following two questions. The 
first is, if the given uncertainty is stable and 
bounded will the closed loop system be stable 
for this uncertainty? The second one is, for the 
given control system what is the smallest 
uncertainty destabilizing the closed loop 
control system? 

Consider a system with nominal plant  
and the compensator (see Fig 8). The plant and 
the compensator are supposed to be stable 
ones. 

)(sG

 
Fig 8. Block diagram of the feedback control 

system. 
 

Using Nyquist stability criterion the closed 
loop control system is stable if and only if 
takes place the following inequality: 

)()( sKsG  < 1                     (6.1) 
Left side of the inequality can be rewritten 

as: 
)()()()( sKsGsKsG ≤                     (6.2) 

The closed loop stability condition can be 
derived from eqs. (6.1) and (6.2). We have for 
this criterion: 

)()( sKsG  < 1                                     (6.3) 
Let us use the small-gain theorem for 

derivation of conditions of robust stability of 
control system under multiplicative 
uncertainty at the plant output. Consider the 
feedback system shown in Fig 9a. To derive 
the block diagram of the feedback system in 
Fig 8 it is necessary to determine the transfer 
function seen by the uncertainty. For these 
refer to Fig 9b and the transfer function M(s) 
(see Fig 9c) between ‘input’ and ‘output’ is 
given by [1, 5]: 

)()(1
)()()(
sKsG

sKsGsM
+
−

=          (6.4) 

The small-gain theorem states that if the 
above transfer function and the uncertainty 
transfer function are stable the closed loop 
control system will be robustly stable if and 
only if [1, 4, 5]: 

)(smΔ <
[ ] 1)()(1)()(

1
−+ sKsGsKsG

,  (6.5) 

or in other representation 

)(smΔ <
)(

1
sT

.          (6.6) 

 
Fig 9. Feedback control system with 

multiplicative uncertainty. 
 

Eqs. (6.5) and (6.6) can be used to answer 
the first of two questions posed earlier. If the 
uncertainty is bounded by the given scalar γ, 
one can have the following inequality: 

)(sT <
γ
1 , or )( sTγ <1         (6.7) 

The second question of two posed before is 
about finding the smallest stable multiplicative 
uncertainty, which will destabilize the closed 
loop system. It is known that uncertainty must 

be smaller than 
)(

1
sT

, i. e. it must be smaller 



  

       
            “HENRI COANDA”                                                                                                                                                                                                                    “GENERAL M.R. STEFANIK”

AIR FORCE ACADEMY                                                                                                                                                                                                                 ARMED FORCES ACADEMY  
                ROMANIA                                                                                                                                                                                                                                       SLOVAK REPUBLIC 
 

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 
Brasov 

 

 

than minimum of 
)(

1
sT

. For the minimum of 

the right side of eq. (6.6) we must maximize 
. The maximum of  over all possible 

frequencies is its peak value. The smallest 
uncertainty destabilizing the feedback system 
is given by [6] to be: 

)(sT )(sT

rM
MSM 1

= , 

where )( ω
ω

jTM r sup= .         (6.8) 

In eq. (6.8) MSM denotes the Multiplicative 
Stability Margin. 

The supremum of )( ωjT  is equal to the 
maximum of the function being investigated 
on the given frequency range. 

For the MIMO feedback system the size of 
the smallest destabilizing multiplicative 
uncertainty can be derived as follows: 

[ ] [ ])(
1)(
ωσ

ωσ
jT

jm =Δ .         (6.9) 

Using the same approach conditions of 
robust stability under additive uncertainty can 
be determined. In this particular case transfer 
function seen by the uncertainty is given as 
follows 

)()(1
)()(

sKsG
sKsM

+
−

=        (6.10) 

The feedback system will be robustly stable 
if takes place the following inequality: 

)(saΔ <
[ ] 1)()(1)(

1
−+ sKsGsK

,        (6.11) 

or, in other manner 

)(saΔ <
)()(

1
sSsK

.       (6.12) 

If the additive uncertainty is stable and 
bounded by 

)(saΔ <
γ
1 .        (6.13) 

The closed loop robust stability can be 
guaranteed if 

)()( sSsK <
γ
1 , or )()( sSsKγ <1     (6.14) 

The Additive Stability Margin (ASM) can be 
defined by [6] as follows: 

)()(sup
1

ωω
ω

jSjK
ASM = .      (6.15) 

For the MIMO feedback system the size of 
the smallest additive uncertainty destabilizing 
the feedback system can be derived as follows: 

[ ] [ ])()(
1)(

ωωσ
ωσ

jSjK
ja =Δ .       (6.16) 

It is easily can be seen that for protection 
against destabilizing multiplicative 
uncertainties MSM must be large, the 
complementary sensitivity must be small. It 
leads to good noise suppression but conflict 
with reference signal tracking and disturbance 
rejection. The transfer function of ASM is that 
of determining control energy. 
 

7. SUMMARY 
The paper dealt with dynamic 

performances of the SISO and MIMO 
feedback systems and with its main equations. 
The sensitivity and closed loop sensitivity 
transfer functions have been involved to 
determine the desirable shape of the open loop 
control system Bode diagram. Shapes of these 
functions were determined so as to meet 
dynamic performances of the feedback system. 

Two kinds of uncertainties were derived 
for determination if controller is able robustly 
stabilize the true plant with given uncertainty. 
For derivation of smallest uncertainty 
destabilizing the closed loop control system 
the multiplicative and additive stability 
margins also were determined. 
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