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Abstract: Combustion processes are sensitive to fluctuations of pressure, density and temperature of the 
environment. Even slow changes of those quantities affect the energy released according to rules that can 
be deduced from the behavior for steady combustion. Combustion instabilities normally occur in 
frequency ranges such that genuine dynamical behavior is significant. That is, the transient changes of 
energy release do not follow precisely in phase with imposed changes of a flow variable such as pressure. 
A fluctuation of burning produces local changes in the properties of the flow. Those fluctuations 
propagate in the medium  and join with the global unsteady field in the chamber. The dynamical response 
of the medium converts the local fluctuations to global behavior. In this paper are presented some results 
and remarks about combustion instabilities. 
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1. INTRODUCTION 
 

Chemical propulsion systems depend 
fundamentally on the conversion of energy 
stored in molecular bonds to mechanical 
energy of a vehicle in motion. The first stage 
of the process, combustion of oxidizer and fuel 
takes place in a vessel open only to admit 
reactants and to exhaust the hot products. 
Higher performance is achieved by increasing 
the rate of energy release per unit volume. A 
useful strategy, particularly for applications to 
flight, is reduction of the average temperature 
at which combustion takes place. Generation 
of NO by the thermal or Zeldovich’ 
mechanism is then reduced. Lower combustion 
temperature may be achieved by operating 
under lean conditions, when the flame 
stabilization processes tend to be unstable. 
Fluctuations of the flame cause fluctuations of 

energy release, which in turn may produce 
fluctuations of pressure, exciting acoustical 
motions in the chamber. The simplest 
assumption is that combustion processes 
behave as a first order dynamical system 
characterized by a single time delay or 
relaxation time. There are three main reasons 
that the classical view of acoustics is a good 
first approximation to wave propagation in 
combustion chamber: 

- the Mach number of the average flow is 
commonly small, so convective and refractive 
effects are small; 

- the exhaust nozzle is choked, incident 
waves are efficiently  reflected, so for small 
Mach number the exit plane appears to be 
nearly a rigid surface; 

- in the limit of small amplitude 
disturbances, it is a fundamental result for 
compressible flow that any unsteady motion 



can be decomposed into three independent 
modes of propagation, of which one is 
acoustic. The other two modes of motion are 
vertical disturbances, the dominant component 
of turbulence, and entropy waves. 

The most obvious evidence that 
combustion instabilities are related to classical 
acoustic resonances is the common 
observation that frequencies measured in tests 
agree fairly well with those computed with 
classical formulas.  

 

       
         Fig. 1. Combustion chamber 

Generally, the frequency f of a wave equals 
its speed of propagation, a, divided by the 
wavelength λ  

λ
=

af                  (1) 

The wavelengths of the organ-pipe modes 
are proportional to the length L of the pipe, 
those of modes of motion in transverse planes 
of a circular chamber (fig. 1) are proportional 
to the diameter D, and so forth. 

There are two basic implications of the 
conclusion that these formulas seem to predict 
observed frequencies fairly well: evidently the 
geometry is a dominant influence on the 
special structure of the instabilities and we can 
define some sort of average speed of sound in 
the chamber (fig. 2), based on an 
approximation to the temperature distribution. 
 
 

2. CHARACTERISTICS OF 
COMBUSTION INSTABILITIES 

 
It is a general result of the theory of linear 

systems that if a system is unstable, a small 
disturbance of an initial state will grow 
exponentially in time: amplitude of 
disturbance where  is called 
growth constant. If a disturbance is linearly 

stable, then its amplitude decays exponentially 
in time, being proportional to  and 

tge ⋅α≈ 0>αg

tde ⋅α−

0>αd  is the decay constant. Having 
maximum amplitude  in one cycle of a 
linear oscillation the pressure is 

0p̂
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0ˆ ttgeptp −α⋅=′              (2) 

where  is the amplitude at  time . If 0p̂ 0tt −
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In practice, 12 tt −  is usually taken equal to 
the period τ , the time between successive 
positive (or negative) peaks. 

There is really only one problem to solve: 
find the growth and decay constants, and the 
frequencies of the modes. Typically, both the 
frequency and the mode shape for small-
amplitude motions in a combustion chamber 
are so little different from their values 
computed classically as to be indistinguishable 
by measurement in operating combustors.   

 
Fig. 2. Velocity field 

 
The linear stability problem is really 

concerned with calculations of the growth and 
decay constants for the modes corresponding 
to the classical acoustic resonances. An 
arbitrary small amplitude motion can, in 
principle, be synthesized with the results, but 
that calculation is rarely required for practical 
applications. 

Results for the net growth or decay 
constant have been the central issue in both 
theoretical and practical work. In combustors, 
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processes causing growth of disturbances and 
those causing decay act simultaneously. Hence 
an unstable disturbance is characterized by a 
net growth constant that can be 
written . Because the problem is 
linear, the growth constants can quite 
generally be expressed as a sum of the 
contributions due to processes accounted for in 
the formulation, as for example: 

dg α−α=α

( ) ( )
( ) ( ) ....+α+α+

+α+α=α−α=α

structureflowmean

nozzlecombustiondg
      (5) 

The stability boundary – the locus of 
parameters making the boundary between 
unstable  and stable ( 0>α ) ( )0<α  
oscillations – is defined by 0=α . That 
statement is a formal statement of the physical 
condition that the energy gained per cycle 
should equal the energy lost per cycle:   

 dg α=α

 
Fig. 3. Temperature field 

By the definition of , both the pressure 
and velocity oscillations have the time 
dependence 
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multiplied by their spatial distributions. The 
acoustic energy density is the sum of the local 

kinetic energy, proportional to , and 
potential energy. If we assume that the period 
of oscillation, 

( )2u′

ωπ=τ /2  is much smaller than 
the decay rate, α/1 , and the values of these 
functions averaged over a cycle of the 
oscillations are proportional to , the 
acoustic energy density is itself proportional to 

. Integrating over the total volume of the 
chamber we find that the total averaged energy 
is , where  is a constant 
depending on the average flow properties, the 
temperature flow field (fig. 3) and the 
geometry. We find the result 
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Another elementary property is that α/1  is 
the time required for the amplitude of 
oscillation to decay to  of some chosen 
initial value. Also, the fractional change of the 
peak value in one cycle of oscillation 
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where m  denotes the magnitude of the peak 
amplitude. Assuming that the fractional 
change in one period τ  is small, so 

( ) ( ) τ⋅α+=−α+≈−α 11 21
21 tte tt                 (9) 

The amplitude itself is approximately 
proportional to  or  and we can write 
the fractional change as  
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where f is the frequency in cycles per second, 

τ
=

1f . The dimensionless ratio α/f  is a 

convenient measure of the growth or decay of 



an oscillation. According to the interpretation  
noted above,  is the number of cycles 
required for the maximum amplitudes of 
oscillation to decay to  or grow to ‘e’ times 
an initial value. 

α/f

e/1

 
 

3. NONLINEAR BEHAVIOR 
 
We may anticipate that nonlinear behavior 

may be regarded in first approximations as an 
extension of the view of linear behavior 
because the frequency varies little, remaining 
close to a value computed classically for a 
natural resonance of the camber, and the 
growth of the peak amplitude during the initial 
transient period is quite well approximated by 
the rule for a linear stability. Thus the behavior 
is distinguishable from that of a classical linear 
oscillator with damping, and having a single 
degree of freedom. The governing equation for 
the free motion of a simple mass , spring 

 and dashpot (  is 
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It is surely tempting to model a linear 
combustion instability by identifying the 
pressure fluctuation, , with the displacement 
x of the mass. Then upon dividing this 
equation by m and replacing x by , we have  

p′

 p′

02 2
02

2

=′+
′

+
′

p
dt
pd

dt
pd

ωα               (12) 

where  and the undampened natural 
frequency is 

mr /2 =α
mk /0 =ω . 

According to the theory of classical 
acoustics for a sound wave, we may identify 
both kinetic energy per unit mass, proportional 
to the square of the acoustic velocity u′  and 
potential energy per unit mass, proportional to 
the square of the acoustic pressure p′ . The 
acoustic energy per un  volume is  it
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where ρ  and a  are the average density and 
the speed of sound.  This expression 
corresponds to the formula for the energy of a 
simple oscillator 

( )22

2
1 kxxm +&                   (14) 

Both the velocity and the pressure 
fluctuations have spatial distributions such that 
the boundary condition of no velocity normal 
to a rigid wall is satisfied. Hence the local 
pressure p′  in the equation (12) must depend 
on position as well as time. However, the 
frequency 0ω  depends on the geometry of the 
entire chamber and according to equation (7) 
we should be able to interpret  as the 
fractional rate of change of the averaged 
energy in the entire volume. 

α2

Locally in the medium the spring constant 
is supplied by the compressibility of the gas 
and the mass participating in the motion is 
proportional to the density of the undisturbed 
medium. When the procedure of spatial 
averaging is applied, both the compressibility 
and the density are weighted by the 
appropriate spatial structure of the acoustical 
motion. As a result, the damping constant and 
the natural frequency are expressed in terms of 
global quantities characterizing the fluctuating 
motion throughout the cham er. So can 
represent 

b , we 

( ) ( )rtypp nnn
r

φ=′                 (15) 
where p  is the mean pressure and  is the 
spatial structure of the classical acoustic mode 
identified by the index 

( )rn
r

φ

( )n . Hence the typical 
equation of motion is 
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The constants nα  and  contain the 
influences of all linear processes 
distinguishing the oscillation in a combustion 
chamber from the corresponding unperturbed 
classical motion govern d by he equ

nω

e t ation 

02
02

2

=+ nn
n y

dt
yd ω                 (17) 

if dissipation of energy is ignored. Because 
damping in a mechanical system causes a 
frequency shift, the actual frequency is not 
equal to the unperturbed value, .  0nω

For combustion chamber it is convenient to 
regard the linear perturbing process as a force 

( )nnn yyF &, , so equation (17) is written 
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The force  consists of two terms, one 
representing the damping of the mode and one 
the frequency shift: 

L
nF

nnnn
L

n yyF &α+ωΔ−= 22                 (19) 
According to classical acoustic theory, a 

closed chamber of gas at rest has an infinite 
number of normal or resonant modes. The 
spatial structures (mode shapes) and resonant 
frequencies are found as solutions to an 
eigenvalue problem. A general motion in the 
chamber, having any spatial structure, can then 
be represented as a linear superposition of the 
normal modes. The process of spatial 
averaging, leading to equation (17), amounts 
to representing any motion as an infinite 
collection of simple oscillators, one associated 
with each of the normal modes. That 
interpretation holds as well for equation (18) 
except that now each mode may suffer 
attenuation (  or excitation . )0<αn ( )0>αn

Determining the linear stability of a system 
comes down to computing the value of the 
constant . Assume that only one mode is 
active and the driving force is entirely due to 
fluctuations of the rate of heat Q  provided to 
the flow, in simplest form the equation for the 
amplitude is 
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where  is the spatial distribution of the 
pressure for the mode defined so the 
fluctuation is 

( )rφ

( )rypp φ=′ . Suppose that the 
heat release rate is sensitive only to pressure 
and write its fluctuation as 

φ=′=′
′
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where R  is the response function,  having 
dimensions of inverse time 
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the substitution of (21) in (20) leads to a 
formula for α : 
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and α  is proportional to the response function 
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The equation governing the ampli s tude i
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with the solution 
( ) ( )ϕωα += tAety t

2cos           (25) 
where A and ϕ  are constants and 

. 22
1

2
2 α−ω=ω

If α  is positive, the oscillation is driven by 
the response of the heat release to the pressure 
fluctuations. 

The essential idea in all applications of the 
time lag is that a finite interval – the lag – 
exists between the time when an element of 
propellant enters the chamber and the time 
when it burns and releases its chemical energy. 
Suppose that at time t the pressure in the 
chamber suddenly decreases, causing an 
increase in the flow of propellant through the 
injector, the increased mass burns at some later 
time τ+t , where τ  is the time lag. 
 
 
 
 
 



4. CONCLUSIONS 
 

Whatever the system, most combustion 
instabilities involve excitation of the acoustic 
modes, for which there are an infinite number 
for any type of chamber. The values of the 
frequencies are functions primarily of the 
geometry and of the speed of sound. These 
modes are unstable and depend on the balance 
of energy supplied by the exciting mechanisms 
and extracted by the dissipating processes. 

The presence of the combustion processes 
and a mean flow field are not accounted for 
explicitly, but it is necessary to include a good 
approximation to the boundary condition 
applied at the exhaust nozzle, particularly if 
the average Mach number is not small. 

The most important measure of the 
perturbations is a Mach number, 

rM characterizing the mean flow; for many 
significant processes,  equals f/α rM  times a 
constant of order unity, so the measured value 
of   is an initial indication of the validity 
of the view that a combustion instability can 
be regarded as a motion existing because of 
relatively weak perturbations. 

f/α
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