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Abstract: This paper presents a mathematical model of an unsteady fluid flow around an airfoil where the 
time dependency is introduced through the boundary conditions. The methods of solution that were 
developed for these models included the treatment of the zero normal flow on a solid surface and the use 
of the unsteady Bernoulli equation. As a result of the nonuniform motion, the wake becomes more 
complex than in the corresponding steady flow case and therefore the path along which the airfoil moves 
was assumed to be prescribed. One of the more difficult aspects of the unsteady problem is the modeling 
of the vortex wake’s shape and strength, which depend on the time history of the motion. In the paper the 
wake shed from the trailing edge of the lifting surfaces was modeled by vortex distributions.  
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1. INTRODUCTION 
 

In an incompressible and irrotational fluid 
flow, the velocity field can be obtained by 
solving the continuity equation. However, the 
incompressible continuity equation does not 
directly include time-dependent terms and the 
time dependency is introduced through the 
boundary conditions. The methods of solution 
for steady flows can be used with only small 
modifications that include the treatment of the 
zero normal flow on a solid surface boundary 
conditions and the use of the unsteady 
Bernoulli equation. As a result of the 
nonuniform motion, the wake becomes more 
complex than in the corresponding steady flow 
case and it should be properly accounted for. 

The unsteady motion of the surface on 
which the “zero normal flow” boundary 

condition is applied, is described in a body-
fixed coordinate system (x, y, z) and the 
motion of the origin of this coordinate system 
(Fig. 1) is then prescribed in an inertial frame 
of reference (X, Y, Z).  
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Fig. 1. Coordinate systems 



 
At the , the relative motion of the 

origin of the body fixed frame of reference is 
prescribed by its location  
and the instantaneous orientation 

, where 

0t >

( ) ( )0000 Z,Y,XtR =

( ) ( )ψθϕ=Θ ,,t ( ψθ )ϕ ,,  are the Euler 
rotation angles [1]. 

The fluid surrounding the body is assumed 
to be inviscid, irrotational and incompressible 
over entire flow field, excluding the body’s 
solid boundaries and its wake. Therefore, a 
velocity potential  can be defined 
in the inertial frame and the continuity 
equation in this frame of reference becomes 

and the boundary condition requiring 
zero normal velocity across the body’s solid 
boundaries is  

( Z,Y,XΦ )

)

02 =Φ∇

( ) 0nv =⋅+Φ∇
r              (1) 

where  is the surface velocity and 
 is the unity vector normal to this 

moving surface (v is defined with minus sign 
so that the undisturbed flow velocity will be 
positive in the body’s frame of reference).  

vr

( t,z,y,xnr

The location and orientation of nr  can vary 
with time, so, the time dependency of equation 

is introduced through the boundary 
condition. The second boundary condition 
requires that the flow disturbance due to the 
body’s motion through the fluid, should 
diminish far from the body,  

02 =Φ∇

0lim
0RR

=Φ∇
∞→−

             (2) 

where . ( )Z,Y,XR =
On the other hand, the Kelvin equation 

could be an additional condition for the 
unsteady flow, that can be used to determine 
the stream wise strength of the vorticity shed 
into a wake, so, the circulation  around a 
fluid curve enclosing the body and its wake is 
conserved,  

Γ

0dt/d =Γ               (3)  
Because of the boundary condition this 

problem becomes time dependent and it could 
be solved easier in the body-fixed coordinate 
system [2]. A transformation from 

coordinate system to (  
coordinate system should include the 
translation and the rotation of the (  
system and may have the following form 

( Z,Y,X

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

×

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ϕϕ−

ϕϕ

×

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ϕϕ

ϕ−ϕ

×

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ϕϕ−

ϕϕ=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

0

0

0

ZZ

YY

XX

100

0tcostsin

0tsintcos

tcos0tsin

010

tsin0tcos

tcostsin0

tsintcos0

001

z

y

x

 
The kinematic velocity vr  of the 

undisturbed fluid due to the motion of the 
airfoil as viewed in the body frame of 
reference is given by  

( )rvVv rel0
rrrrr

×Ω++−=             (4)  
where  
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            (5) 

At any moment the continuity equation is 
independent of the coordinate system 
orientation and the mass is conserved [3]. 
Therefore, the quantity  is independent of 
the instantaneous coordinate system and the 
continuity equation in terms of ( )  
remains unchanged, .  

Φ∇2

z,y,x

02 =Φ∇
 

2.  WAKE SHAPE 
 
The zero velocity normal to the solid 

surface boundary condition in the body frame 
is  

( ) 0nrvV rel0 =⋅×Ω−−−Φ∇
rrrrr

           (6) 
) )

)

z,y,x

z,y,x

in ( )z,y,x  coordinates. 
In the case of more complex flow field, 

when the modeling of nonzero velocity 
components across the boundaries is desired, a 
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transpiration velocity,  can be added, so, 
the above equation becomes 

nV

 ( ) nrel0 VnrvV =⋅×Ω−−−Φ∇
rrrrr

           (7) 
For incompressible flows the instantaneous 

solution is independent of time derivatives, 
therefore the steady-state solution techniques 
can be used to approach the time dependent 
problem by substituting at each moment, the 
instantaneous boundary condition  

( ) 0nv =⋅+Φ∇
r              (8)  

For lifting flow conditions, the magnitude 
of circulation depends on the wake shape and 
on the location of the wake shedding line [4]. 
Taking into consideration that the wake is 
force free, the Kutta-Jukovski theorem states 
that  

0V w =γ×∞              (9) 
so, when the wake is modeled by a vortex 
distribution of strength wγ  the velocity 

should be parallel to the circulation 
vector 

∞V
wγ . 

Solution of the equation  in 
 coordinates, provides the velocity 

potential and the velocity components [5] 
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The resulting pressure can be computed by 
the Bernoulli equation 
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The time derivative in the  system 
is 
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therefore, the pressure difference ( ) ρ−∞ /pp  
has the form 
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The magnitude of the velocity Φ∇  is 
independent of the frame of reference.  

 
3. PLAT PLATE MODEL 

 
For a flat plate at an angle of attack α  

moving at a constant velocity  in the 
negative X direction (Fig. 2) the translation of 
the origin 

∞U

0V
r

, the rotation Ω
r

 and the normal 
vector nr , are 
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( )αα= cos,0,sinnr  
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Fig. 2. Translation of a flat plate 

The boundary condition requiring zero 
normal velocity across the plate is 

( ) 0nrV0 =⋅×Ω−−Φ∇
rrrr

          (14) 
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          (16) 

If the airfoil (plate) is represented by a 
lumped-vortex element with the vortex placed 
at the quarter chord (Fig. 3), the Kutta 
condition is satisfied.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Development of the wake vortex 

 
The concentrated wake vortex has to be 

placed along the path traveled by the trailing 
edge [6]. 

If the wake vortex is placed at the middle 
of this path, then the zero normal flow 
boundary condition at the plate’s three-quarter 
point is 

( )
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This equation can be rewritten in the form 
         (18) 0sinUww wakebody =α++ ∞

which indicates that the sum of the normal 
velocity induced by the airfoil, , by the 
wake, , and by the free stream must be 
zero. 

bodyw

wakew

On the other hand, an additional equation 
could be obtained from the Kelvin condition 
( )0dt/d =Γ , namely 

( ) 0t 1w1 =Γ+Γ            (19) 
The above set of equations with the 

unknowns ( )1tΓ  and 1wΓ  gives the following 
solution 
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After the second time step, , the 

airfoil is in a new location. For high Reynolds 
number flows, vortex decay is negligible and 
therefore the strength 

t2t2 Δ=

1wΓ  will not change 
with time. At t2t2 Δ=  the two equations 
describing the zero normal flow boundary 
condition and the Kelvin condition are: 
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This set is solved for   and ( )2tΓ 2wΓ , 
while 1wΓ is known from the previous 
calculation at 1tt = . At  the two 
equations can be written in a similar manner 
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This set is solved for   and ( )3tΓ 3wΓ , 

while  and are known from the 
previous calculation at . 

2wΓ 1wΓ

2tt =
The values of  and are found from 

the following set of equations written in the 
matrix form 
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4. WORTEX DISTRIBUTION 
 
The wake shed from the trailing edge of 

the lifting surfaces can be modeled by doublet 
or vortex distributions (Fig. 4).        

If the airfoil circulation is varying 
continuously, then a continuous vortex sheet is 
shed at the trailing edge and can be 
approximated by a discrete vortex model 
where the strength of each vortex  is equal  wiΓ

 
 
 
 
 
 
 
 
 
 
 
 

to the vorticity shed during the corresponding 
time step tΔ , such that  

( )∫
Δ−

∞γ=Γ
t

tt
wiwi dtUt           (21) 

The distance and relative angle to the 
trailing edge are important numerical 
parameters and the wake vortex location 
should be closer to the position of the trailing 
edge (Fig. 5).  
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Position of the discrete vortex 
 

The placement of the discrete vortex at the 
middle of the interval  is an 
approximation that underestimates the induced 
velocity when compared with the continuous 
wake vortex sheet result. A numerical 
approach to correct for this wake discretization 
error is to place the latest vortex closer to the 
trailing edge. 
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Fig. 4. Discretization of the wake’s vortex distribution 



The Helmholtz theorem implies that there 
is no vortex decay, that is if a wake vortex 
element is shed from the trailing edge, its 
strength is conserved. At each time step the 
combined airfoil and wake induced velocity 

is calculated and the vortex elements 
are moved by ( )
( iw,u )

( ) tw,uy,x iΔ=ΔΔ . The 
system coordinate  is selected such that 
the origin is placed on the path and the x 
coordinate axis is tangent to the path. The 
airfoil camberline is given in this coordinate 
system by , which is considered to be 
small  and the path radius of 
curvature is also much larger than the chord c. 
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5. MATHEMATICAL FORMULATION 

 
The time-dependent version of the 

boundary condition requiring no normal flow 
across the surface is 

( ) 0nrvV rel0 =⋅×Ω−−−Φ∇
rrrrr

         (22) 
where  is the equivalent of the 
steady-state velocity potential, divided into 
airfoil potential and to a wake potential 
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If the wake potential is known from the 
previous time steps then 
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On the other hand, the downwash induced 
by the airfoil bound circulation ( t,x
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so, the time dependent equivalent of the 
steady-state boundary condition becomes 
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with the Kutta condition ( ) 0t,c =γ . 
Based on the classical approach of Glauert, 

a similar solution to the vortex distribution is 
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The lift force per unit span   and the 
pitching moment about the airfoil’s leading 
edge are 
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6. NUMERICAL RESULTS 

 
The results of the computations for a 

number of steps of 200, a velocity 
s/m50U = an angle of attack 

rad180/5 π⋅=α  and a time step 
( )U4/1t ⋅=Δ  are presented in fig. 6. The 

circulation at 0t =  is zero since the airfoil is 
still at rest. At the circulation increases 0t >

)γ  with 
assumptions presented above is 
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but is far less than the steady-state value due to 
the downwash of the starting vortex.  
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Fig. 6. The circulation ratio ( ) ( )200/t ΓΓ  

 
In the above figure was represented the 

ratio between , where the number of 
time steps was 200. After approximately 200 
steps this ratio reaches the value equals with 
the unity. To compute the lift , the small 
disturbance approximation 

( ) ( )200/t ΓΓ

( )Φ∇>>∞U  is 
applied to the unsteady Bernoulli equation 

( )
t

0,0,Upp
∂
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+Φ∇⋅=
ρ
−

∞
∞          (27) 

Taking into account that 

( ) ( )
2
x0,0,x

x
γ

±=±
∂
Φ∂           (28) 

the pressure difference between the airfoil’s 
lower and upper surface is 
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∂
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    (29) 

For the lumped-vortex method there is only 
one airfoil vortex and therefore the lift and 
drag per unit span are 
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      (30) 

One important parameter used in the 
description of unsteady aerodynamics und 
unsteady airfoil behavior is the reduced 
frequency, k, defined as , where ( Vck 2/⋅ω= )
ω  is the angular frequency, c is the chord of 
the airfoil and V is the flow velocity. 
According to the dimensional analysis, the 
resultant force, F, on the airfoil  of chord c, 
can be written in functional form as 

( ) ( )k,MRe,fcV/F 22 =ρ . For  the flow 
is steady and for 

0k =
05.0k0 ≤≤  the flow can be 

considered quasi-steady, that is, unsteady 
effects are generally small. Flows with 
characteristic reduced frequencies above of 
0.05 are considered unsteady [1]. 
The lift amplitude and phase of lift for pure 
angle of attack oscillations are presented in 
Fig. 7 and Fig. 8, where the significance of the 
apparent mass contribution to both the 
amplitude and phase can be appreciated. 

 

 
Fig. 7. Normalized lift amplitude 
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Fig. 8. Phase angle 

At lower values of reduced frequency, the 
circulatory terms dominate the solution. At 
higher values of reduced frequency, the 
apparent mass forces dominate. 
 

6. CONCLUSIONS 
 

The lift at  is exactly half of the 
steady-state lift due to the acceleration portion 
of the lift that results from the change in the 
upwash, not due to the airfoil circulation. 

+= 0t

The drag force has two components, one 
due to the wake-induced downwash which 
rotates the circulatory lift term by an induced 
angle  and other due to the fluid 
acceleration  which acts normal to the 
flat plate, and its contribution to the drag is the 
second lift term times 

∞U/w w
t/∂Φ∂

α . One of the more 
difficult aspects of the unsteady problem is the 
modeling of the vortex wake’s shape and 
strength, which depend on the time history of 
the motion. 

The unsteady forces produced on a rotor 
blade arise primarily because of the vertical 
velocity between the wake disturbance and the 
irfoil surface. In linear theory, this is treated 

as an imposed unsteady upwash field, which 
must be used to satisfy the boundary 
conditions of flow tangency on the airfoil 
surface. 

a
 

The airfoil can generate high lift as a result 
of a vortex that is shed at the leading edge at 
the instant of stall. The vortex travels back 
over the top of the airfoil carrying with it a low 
pressure wave that accounts for the very large 
lift coefficient. 
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