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Abstract: This paper presents a new distribution wich unitary treated through the family of the power 
series distributions, resulting in a new distribution which we called a Max Pareto power series 
(MaxParPS) distribution.  Some properties and reliability characteristics (e.g. survival function, hazard 
rate) are studied. It also shows that in some conditions a Poisson limit theorem for this type of 
distribution takes place. 
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1. INTRODUCTION 
 

Together the most common reliability 
distributions (exponential, Erlang, Weibull), 
there was also Pareto distribution which has 
applications not only in the economy (e.g. 
income of the population), but also to the 
study of lifetime of the systems of , as well 
as in field of quality assurance [5]. 

k n

Pareto at the end XIXth century, formulated 
the principle of 80/20, of the unbalanced 
distributions, which postulates that 80% of the 
effects are generated by 20% of the cases. 

This is the reason for introducing this new 
class of MaxParPS distribution with the aim of 
study the probability behavior of the most 
complicated processes.  

The methodology and techniques of 
working are presented and analyzed in [2], 
which allows the study of the distribution of 
the maximum of a random sample of size Z  of 
the statistical population that has Pareto 

distribution. Random variable (r.v.) Z  has a 
distribution that is part of the power series 
distributions class (PSD, [1]). 

The general problem of determining the 
distribution of the maximum and minimum of 
a random sequence will was solved by 
Louzada et al. in [3], with working tool of the 
generate function composing of the number of 
the r.v. of sequence with the survival function 
of the r.v. components of the sequence. 

Instead, in this paper is approached, in a 
unitary manner, the distribution of the 
maximum of a sequence of independent Pareto 
distributed r.v. through the PSD class, 
distribution enjoyed by the number of the r.v. 
of the sequence. 

The case of the minim was analyzed in [4] 
when it was discussed about the lifetime Min 
Pareto power series (MinParPS) distribution. 

 
2. THE MAXPARPS DISTRIBUTION  
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We consider the r.v. ),(~ ParX i , 

0, , where    are independent and 

identically distributed random variables 
(i.i.d.r.v.), with the distribution function (d.f.) 
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d.f. of the r.v.  is given by: 
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We note that r.v.  following the 

MaxParPS distribution of parameters 
ParU

,  and 

  by )~ ,,( MaxParPSU Par . 

 
Consquence 2.1.  The survival function of 

the r.v.  is the following: ParU
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Consequence 2.2.  P.d.f. of the r.v. 

is characterized by the relationship: 
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for any x . 
 

Proposition 2.2.  Hazard rate of the r.v. 
 is given by: ParU
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Proposition 2.3.  If  is a sequence 

of independent Pareto distributed r.v., 
nonnegative, absolutely continous type, with 
the d.f.   and 
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where  0aNnk n   ,min . 
 

Proof: By applying the  l’Hospital rule -
time, we have: 

k
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Consequence 2.3. The  r th moments, 

 ,Nr  1r      of the r.v.  
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Proof: It is known that the distribution 

function of the maximum of a sample of size 
 which has the d.f.  is 

.  
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latter relation in connection with x , we obtain: 
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r.v.  N21 XXX ,...,,max . By applying the 

mean of the relationship  (2.4), the relationship  
(2.3) is obtained. 

     � 
 

3. POISSON LIMIT THEOREM FOR 
MAXPARPS DISTRIBUTION 

The study of special cases of distributions 
MaxParPS is necessary for this section 
because we want to study under what 
conditions the Max-Pareto-Binomial zero 
truncated (MaxParB) distribution,  
respectively, Max-Pareto-Poisson zero 
truncated (MaxParP) distribution are 
approximate.  

The d.f. of the MaxParB is defined by 
(2.1), where 
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for any x . 

A r.v. which admits the d.f. according to 
the relationship (2.5), is denoted by 
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according to the relationship (2.2), so that : 
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for any x . 

At the same time, the  MaxParP 
distribution is characterized by the d.f. defined 
by the relationship (2.1), where 
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and p.d.f.. according to the relationship (2.2):  
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D.f. of (2.7) characterizes the distribution 
of the r.v. will we note thus: 

),,(~ MaxParPU ParP , 0 ,, . 

Under the above conditions, takes place the 
following result: 

 
Theorem 3.1. (Poisson Limit Theorem) If 
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Remark 3.1. Poisson limit theorem for the 
distribution MaxParPS is confirmed visually 
of the plot in Figure 1, where they are 
presented p.d.f. of the MaxParB and MaxParP 
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