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Abstract: At the beginning of 2000s, armor technology introduced to a new material: shear thickening 
fluid (STF). Due to the thickening behavior of this fluid under the stress, liquid state of the material turns 
into a solid-like state in a very limited time interval. This unique behavior of STF is intended to be used in 
armor systems. This paper offers an overview of STF properties and armor applications using the STF 
technology.  
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1. INTRODUCTION 
 

Armor systems have a remarkable 
importance for the area of security and 
military. From past to present there have been 
different kinds of personal armor systems used 
to eliminate the attacking threats. Early 
applications used bulk layers of leathers 
covering around the body as the personal 
armor systems. By the emerging of advance 
weapons, metal armor systems came into 
prominence such as steel shields. Metal armors 
were safe but unfortunately heavy to act freely 
during the combats. For this reason, recent 
studies have been focused on ceramic 
composites and light ballistic fabrics such as 
aramid based fabrics. 

At the beginning of 2000s, shear 
thickening fluids (STF) were thought to be 
used as armor materials then inevitable 
development in the defense industry started. 
Usage of these fluids merely or combined with 

the other armor systems not only provides 
protection also flexible motion for the users. 

2. SHEAR THICKENING FLUIDS 
 

Shear thickening fluids are an example of 
non-Newtonian fluids which have increasing 
viscosities since shear stress is applied. Even 
the shear stress reaches the upper levels, fluid 
shows solid-like behavior for a split second. 
After removing the stress from the medium, 
fluids turn to the initial liquid behavior [1-9]. 
STFs are seen as appropriate armor materials 
with their unique characteristics.  

History of STFs in the investigation area is 
quite new and not more than 50 years. 
Improvement of the research techniques such 
as latest rheometers, scanning methods, rheo-
optical devices and Stokesian dynamics, gave 
us a chance to understand the STF mechanism 
profoundly [10]. Because discontinuous 
characteristics may be seen at the critical shear 
rates, stress controlled rheometers are more 
convenient than conventional type rheometers. 



Beside Stokesian dynamics simulation is used 
widely to simulate the behavior of many-body 
interactions in the suspension [11].  

Plenty of non-Newtonian fluids can be 
found in the nature, but STFs are very rare. 
The most common example is wet sand at the 
beaches. Another easily accessible example is 
cornstarch in water suspension whose 
rheological behavior is given in Figure 1. 

 

 
 

Figure 1. Rheological behavior of 55 wt% 
cornstarch in water suspension [9] 

 
2.1 Mechanism of STFs. There are two 

main theories explaining the mechanism of 
STFs: order-disorder and hydroclustering. 

Hoffman made the pioneering study about 
the micromechanical of shear thickening. This 
study became the basis of order-disorder 
theory. He proposed that below the critical 
shear rate, particles in the suspension are in a 
hexagonally packed order. After the critical 
shear rate, this packed particles disorder and 
particles aggregate. This transition from order 
to disorder causes a drastic increase in the 
viscosity [12]. 

Hydrocluster theory was first introduced by 
Bardy with Stokesian dynamics simulations 
[13]. This theory was supported by neutron 
scattering, rheological and rheo-optical tests as 
well as computer simulations [14-17]. 
Hydrocluster mechanism arises from particle 
interactions in the liquid suspension. Under the 
high level stress, particles have contacts each 
other. This effect yields an increase in the 
hydrodynamic forces. Then hydroclustering 
emerges which is defined as aggregation of the 
particles with increased viscosity and jammed 
behavior of the fluid [16, 17].  

Behavior of the particles in the suspension 
is seen in Figure 2. In the shear thickening 
zone, dark particles indicate the hydroclusters 
in the suspension.   

 
 

Figure 2. Particles in suspension [18] 
 
2.2 Particle effects in suspensions. STFs 

are obtained by constituting suspensions with 
solid particles in appropriate liquids. These 
suspensions can be prepared in many different 
ways. Since the mechanism of STF depends on 
particles behavior, particles have strong 
influence in the suspension characteristics.  

Particle effects can be defined in terms of 
particle volume fraction, particle shape, 
particle size, particle size distribution, and 
particle interactions [1, 18-21].   

Particle volume fraction is defined as the 
fraction of total volume by particle volume 
and said to be the most important parameter in 
the thickening mechanism. A lower limit value 
is reported for the thickening behavior by 
Barnes et al. [20]. It is stated that above the 
volume fraction of 0.5, behavior of fluid 
changes drastically with the change in shear 
rate. Critical shear rate, which is defined as at 
which the shear thickening begins, decreases 
with the increase of particle volume fraction. 
Figure 3 shows the effect of the particle 
volume in the suspensions. 
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Figure 3. Effect of particle volume fraction [23] 
Particle shape is another parameter having 

effect on the characteristics of the suspensions. 
Sharp edged particles in the suspension cause 
quick thickening as seen in Figure 4. 
Suspension with rod particles has the critical 
shear rate of 100s-1 whereas with sphere 
particles this rate is about 300s-1 [20]. 

Beazley [24] also states that particle 
rotation during flow may result in particle 
interlocking and jamming. With the high 
aspect ratio particles such interlockings will be 
seen more easily at lower particle volume 
fractions. Therefore, suspensions with high 
aspect ratio particles require lower critical 
volume fraction to achieve shear thickening.  

 

 

 
Figure 4. Effect of particle shapes in the 

suspension [20] 
 
Particle size is another important parameter 

in STF behavior. It is known that as the 
particle size increases, critical shear rate 
decreases [20]. Figure 5 shows the relation 
between particle size and critical shear rate. 

Particle size distribution affects the critical 
shear rate in the suspension. It is noted that 
critical shear rate increases when the particle 
size distribution becomes wider. Shear 
thickening can be achieved at lower shear rates 
by eliminating the small particles from the 
suspensions [20]. 

 
 

Figure 5. Effect of particle size in suspension [20] 
 

Particle interactions have an influence on 
the shear thickening behavior. Particles in the 
suspensions may be neutral or repulsive to 
another by the effects of electrostatic, entropic, 
or steric interactions. It is stated that 
viscosities of deflocculated suspensions are 
lower at low shear rates. Shear thickening of 
these fluids occurs at high shear rates. On the 
other hand, viscosities of flocculated 
suspensions are higher at low shear rates. 
These fluids show shear thinning at high shear 
rates [1, 20]. Figure 6 shows the effect of 
chemically induced flocculation. 



 

 
 

Figure 6. Effect of chemically induced flocculation 
[20] 

Beside the parameters given above, 
additional parameters can be shown as 
examples. Hardness of the particles is one of 
these parameters. Shear thickening behavior 
increases with increase in hardness of the 
particles [21]. Another parameter is 
temperature which improves the shear 
thickening behavior by decreasing [25]. 

Some studies focus on the methods for 
improving the shear thickening behavior. For 
example, nano fillers are used to improve the 
shear thickening. In this method, nano fillers 
increase the dispersibility of nano particles 
which enhances the interaction between the 
particles and results in a better particle 
clustering.  To achieve this, carbon nano tubes 
(CNTs) are applied into silica-poly ethylene 
glycol suspension. It is noted that CNT 
reinforcement improves the dispersibility of 
nano particles in the suspension [19]. 

 
3. ARMOR APPLICATIONS  

 
Armor technology has been continuously 

improved like weapon technology. These two 
terms always keep up with each other. Ballistic 
protection has to be actual to overcome the 
attacking threats. Therefore, every kind of 
material has been considered as armor 
materials such as aluminum, steel, leather and 
silk. Principally, the method of protection uses 
a hard rigid material for resisting the 
penetration of missiles. But, after the debut of 
synthetic textiles, better ballistic armors have 
been developed [26].  

 

3.1 Fabrics in protection. Ballistic fabrics 
are made of high strength fibers and chosen 
due to their high energy absorption capacity 
and proper tenacity/weight ratio. Furthermore, 
ballistic fabrics provide easy motion for users 
with their flexible structures [27-29].  

Energy absorption and propagation 
capacity of fabric layers are related to the 
tensile modulus of fibers. Fibers having high 
tenacity and high elastic modulus are chosen 
for production of ballistic fabrics. In addition 
to this, construction of the fabrics has an 
intense effect on ballistic performance. In the 
construction of these fabrics, warp and weft 
yarns are woven by using different weaving 
types such as plain and basket types. 
Generally, warp and weft yarns are selected 
with identical strengths to achieve the same 
properties in all directions [30]. Then, woven 
layers are piled on each other to obtain 
laminated fabrics. Laminated fabrics are called 
2D fabrics and the major problem is 
delamination. Latest studies focus on 3D 
fabrics in ballistic protection. 3D fabrics have 
yarns running in three directions therefore, 
delamination problem is decreased by the 
reinforcement of yarns along the third 
direction [31-41]. Figure 7 shows fabrics in 2D 
and 3D forms schematically.  

 

 
                 (a)                                           (b) 

Figure 7. Fabrics in (a) 2D form (b) 3D form 
 
3.2 Application of STFs in ballistic 

protection. Although STFs are worldwide 
known, application of these materials in 
ballistic protection is quite novel. First studies 
were started at the University of Delaware in 
mid 1990s. Considerable results were attained 
at the beginning of the 2000s. Composites of 
Kevlar® and STFs were introduced as armor 
systems in the publications. This technology 
was also supported by Army Research 
Laboratory. In 2004, a patent application [42] 
was filed with the cooperation of University of 
Delaware and Army Research Laboratory [1]. 
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The most important gains in STF based 

armors are reduced weight and flexible 
motion. In the combat zones, conditions are 
already crucial. In additions to these 
difficulties, struggling with the equipment and 
the armor makes the soldiers daunted. Average 
combat loads for U.S Army soldiers in 
Afghanistan 2003 are given in Table 1. 

 
Table 1. Average combat loads for U.S Army 

soldiers in Afghanistan, 2003[43] 
 

 Average Fighting Load 
Duty Position Weight 

(kg) 
Percentage of 
Body Weight 

Rifleman 28 36 
Automatic rifleman 36 45 
60mm mortar gunner 29 38 

In 2001, U.S Army Chief of Staff 
expressed a goal that the combat load of the 
individual soldier was not to exceed 23kg [44]. 

Wagner et al. [45] studied characteristics 
of STF impregnated Kevlar®. It is noted that 
starting shear rate values of thickening 
behavior are between 10s-1 and 300s-1 whereas 
the shear rates estimated in the ballistic 
shootings are at 45x103s-1 based on the 
projectile velocity. Therefore, the STFs used in 
the study are ready to exhibit thickening 
behavior in the ballistic tests. In the conclusion 
of the study, it is stated that STF impregnated 
Kevlar® has the highest energy dissipation 
value with respect to the neat Kevlar® and 
ethylene glycol (EG) impregnated Kevlar®. 
EG impregnated Kevlar® has the worst 
protection level because EG is Newtonian 
fluid and serves as lubricant between the yarns 
and the projectile. Figure 8 shows the energy 
dissipation percentages of armor constructions 
by considering the armor weights. 

 

 
 

Figure 8. Energy dissipations of targets [45] 
 
In another study using STF-Kevlar® 

composites, particle volume fraction of STF is 
investigated. As in the pure STF, thickening 
mechanism is more intense on fabrics with 
high volume fractions of particles. 
Furthermore, at low particle loadings, ballistic 
performance is less than neat Kevlar® while at 
high loadings is better than neat Kevlar® [23].  

Tan et al. [50] studied single, double, 
quadruple and six ply Twaron® fabric systems 
with different percentages of STFs. Ballistic 
tests showed that the best protective system is 
double ply fabric impregnated by 40wt% STF. 
This system improves the ballistic limit by 
65% compared to the neat double ply system. 

In the studies, finite element method is 
preferred for modeling the STFs on fabrics. 
But, it is quite complicated to define the 
properties of STF in the model. To overcome 
this problem, Kim et al. [51] modeled the STF 
impregnated Kevlar® without modeling the 
liquid STF. Since STF increases the friction 
between the yarns, a friction function 
dependent to velocity was obtained by 
conducting yarn pull-out energy tests. In the 
conclusion, good agreements between 
simulation and ballistic tests were achieved in 
terms of residual velocities.  



 
3.3 Application of STFs in stab 

protection. STF reinforced fabrics can also be 
considered as protective armors against stab 
attacks. In the literature, studies investigating 
this issue are available.  

Protection of STF impregnated ballistic 
fabrics is determined by conducted some tests. 
These tests are generally performed in two 
ways: drop stab test and quasistatic test. It is 
proven that STFs reinforce the Kevlar® 
significantly for spike impacts while slight 
improvement is seen for knife impacts. Also in 
the quasistatic tests, for puncturing the same 
thick armors, STF-Kevlar® composites 
require two times more load by knife and five 
times more load by spike with respect to the 
neat Kevlar® armors [19, 46, 47].  

Decker et al. [48] and Gong et al. [49] 
studied the stab resistance of the armors at the 
fiber level. Deformation of ballistic fabric 
fibers were investigated by SEM imaging. It is 
noted that STF restricts the fiber mobility 
which prevents the sharp tip of the spike from 
pushing aside fibers and penetrating between 
them (windowing effect). This effect is also 
seen in knife stabs but since cutting takes place 
in knife stabs, fiber mobility cannot be 
restricted effectively. This mechanism 
explains that protection of STF impregnated 
fabrics is higher in spike stabs than in knife 
stabs. Figure 9 shows the load-displacement 
curves for quasistatic loading of Kevlar® and 
STF-Kevlar® targets against both spike and 
knife impactors. 

 

 
 

Figure 9. Load-displacement curves for quasistatic 
loading [47] 

 
4. FUTURE DEVELOPMENT  

 
STFs in armor systems are very new 

technology and open to developments. This 
technology provides two main improvements: 
reduced weight and flexible motion. Whenever 
reduction in weight comes into question, any 
relation with aerospace industry may take 
place. Thus, STFs can be applied to aerial 
vehicles such as helicopters beside the 
personal protection. Today it is just an idea 
however, in the near future it might be 
possible that this technology can protect the 
aerial vehicles. 
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