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Abstract: The paper deals with a pneumatic system for the engine’s compressor’s anti-stall valve’s 
automatic opening, in order to keep the compressor’s operating enough far from the stall line. The 
authors have chosen an automatic opening system based on a pneumatic actuator and a pneumatic 
command system; starting from the non-linear motion equation, one has determined the linearized, 
adimensionalised mathematical model, as well as its simplified form. Based on it one has determined the 
block-diagram with transfer functions and one also has performed some studies concerning system’s 
stability and quality. Results could be used for similar systems’ studying, as well as for further studies of 
embedded engine control systems 

 
Keywords: compressor, stall, control, command pressure, air flow rate. 
 
 

1. INTRODUCTION 
 

Jet engines for aircraft are built in a wide 
range of types, with respect to their thrust, 
constructive solutions and dimensions; no 
matter the solution were, they are equipped 
with compressors (centrifuge or axial). 
 The compressor is one of the most 
important engine’s parts, which is responsible 
for the air pressure raise before the engine’s 
combustor. Its pressure ratio, defined as 
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
 

1

2

p

p
c , depends on the total pressure values 

behind and before it,  and ,. 
2p 

1p
 However, the more important its task is 
and the bigger its pressure ratio is, the more 
sensitive the compressor is. Its sensitivity is 
represented by the possibility of stall 
operating, when the air flow rate through the 

compressor isn’t co-related to the air 
necessities of the engine’s combustor, 
especially during engine’s transient 
(dynamical) operating regimes. 
 Obviously, in order to keep the compressor 
in the stable operational range, one has to 
assure the permanent correlation between the 
combustor’s necessary air flow rate and the 
effective delivered compressor air flow rate, as 
well as the correlation with the injected fuel 
flow rate; that means that compressor’s 
working line is enough far from the stall-line. 
 Stall is caused by the air flow stream’s 
critical attack angle override, followed by 
stream’s detachment and flow’s spectrum 
alteration. In order to prevent it, an air valve is 
mounted on the compressor’s crankcase, 
which role is to evacuate the excessive air, 
readjusting the air speed in the front of the 
compressor’s blades. 
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Main parts:

1-valve' s plate;
2-plate' s rod;

3-valve' s crankcase;
4-spring;

5-compressor' s
crankcase;

6-stator blade;
7-rotor blade;

8-lever.

Fig. 1. Anti-stall valve 

 Compressor’s stall is very difficult to be 
modeled, but some authors have explained it 
(see [10] and [11]) and have proposed some 
prevention methods, such as stator blades 
position adjustment and/or exhaust valves 
using. Blades position adjustment systems are 
described in [2], [13] and [14], while anti-stall 
valves using are described in [14] and [15]. 
 In this paper the authors have studied an 
anti-stall valve’s pneumatic command system. 

 
 

2. COMMAND SYSTEM 
PRESENTATION 

 
 Anti-stall valve (see fig.1) operates by 
evacuating a small air mass flow (no more 
than 3 % of the total compressor’s air mass 
flow ) from jet engine’s compressor 

towards the atmosphere, in order to avoid the 
stall. Valve’s command systems are various, 
from the simplest version (consisting of a 
valve with spring) to the most complex, 
equipped by pneumatic, hydraulic, electric or 
combined actuators and sensors. 

aM

 Figure 2 presents a pneumatic system 
consisting of a single active chamber actuator, 
a nozzle-flap distributor and a two sylphons 
pressure sensor. 
 Main input signal is the pressure captured 
from the last or from an intermediate “k” 

compressor stage (  or ); this pressure 

signal is converted into command pressure 
signal , by using the nozzle-flap 

distributor, as well as the pressure sensor 
chambers A and B. The command pressure 

signal generates the actuator’s rod 
displacement y, which is the output signal. The 
command system’s rod (4) in fig. 2 should be 
connected properly to the lever (8) in fig. 1, in 
order to assure valve’s opening when the input 

pressure  reaches a certain value. The 
command pressure value would be presetted 
by the opening of the variable drossel (7).  


2p 

kp

Cp


2p

 One can observe that the command 
system’s air supplying is realized by the 
controlled compressor and no other active 
fluid is involved. 
 
 

 
 
 

System part 1, 6, 8-drossels; 2-pneumatic actuators:    ;
3-actuator' ston; 4-actuator's rod; 5-actuator's springs pi ;

7-adjusting bolt; 9-nozzle; 10-plateau;
11-flap; 12, 13-silphon.



Q
2 Q4

12

m1

SC

p
C


0<y<05

4
7

0>
x>

0

8

Q
5

9

10 11 12

p
B

p
A

13

B

A

0<
u<

0 6

from the
compressor

SA

valve
opening

p
H

at
m

os
ph

er
e

Q
3

Q3SB

Q4

p
2
*

3

Q4

Fig. 2. Valve’s opening command system 
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3. SYSTEM MATHEMATICAL MODEL 

 
 The studied system’s mathematical model 
consists of the motion equation for each of its 
parts. The non-linear equation will be 
transformed, in order to bring them to an 
acceptable form for further studies, as well as 
for simulations. 
 3.1. Non-linear mathematical model. 
 System’s non-linear motion equations are 
the following: 

a) air mass flow equations: 
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b) nozzle-flap distributor equations: 
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c) pneumatic actuator equations: 
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where  drossels’ diameters; ,d1 ,d3 ,d6 8d

7b variable drossel (7) width; ,, dd 61   

,d3  ,d8  7 mass flow co-efficient; ,pA  

Bp silphon chambers pressure; BA V,V,CV  

chambers volumes; piston and rod mass; 1m

 friction co-efficient; elk g (5) elastic 

constant; 

sprin

sk silphons’ elastic constant; 

BA S,S plateau (10) surfaces areas; 

CS actuator’s piston area. 

The above determined non-linear equation 
system (equations (1) to (13)) is difficult to be 
used for further studies, so it can be brought to 
a linear form, using the small perturbation 
method, considering formally any variable or 
parameter X as 

,0 XXX   (14) 

where 0X  steady state regime’s value, X  

parameter’s deviation and
0X

X
X


  the non-

dimensional deviation.  
3.2 Linearized mathematical model 

 In order to determine a linearized form for 
the above equation system, one has to identify 
the main parameters. The adjusting bolt 
displacement  (performed during the ground 
testing period), has no relevance for the system 
dynamic behavior, so it should be excluded. 

u

 Expressing each one of the main 
parameters as in eq. (14) and introducing them 
into the equation system, after eliminating the 
terms containing the steady state regime, one 
obtains the system’s linear form, as follows: 
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3.3 Non-dimensional linearized model 
 Using some appropriate chosen amplifying 
terms, the above-presented linearized 
mathematical model can be transformed in a 
non-dimensional one; after applying the 

Laplace transformation, one obtains the 
system’s linear non-dimensional mathematical 
model, as follows: 
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3.4. Simplified mathematical model 
 One can make some simplifications to the 
above-determined model, based on several 
experimental observations and determinations:  

a) piston+rod mass is very small, so 
inertial effects could be neglected; 

consequently, the term 
el

y k

m
T 12   in 

equation (33) becomes null; 
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b) viscous friction is insignificant, so the 

friction co-efficient   depends almost 
only on the mechanical friction; 

c) if the *p2 -pressure is enough high, the 
flow through the drossels (1), (6), (7) 
and (8) in fig.2 is critical, so pressures 

Ap and Bp  become proportional to 

their supplying pressure, which is Cp . 

Consequently, the terms A  and B , 
depending on the compressibility co-
efficient   are becoming null; 

d) for small values of (10)-plateau’s areas 
and for small value of the (3)-drossel’s 
diameter, the time constant 
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considered as null; 
e) if the flight regime (airspeed and 

altitude) remains the same, the pressure 

Hp  is constant, so 0Hp  and the 
terms containing it dissapears. 

 Consequently, the simplified mathematical 
model is 
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 Based on it, one can build the system’s 
block diagram with transfer functions, which 
lays in fig.3, as well as the system’s transfer 
functions: 
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- with respect to the flight altitude 
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where one has used the annotation 
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 System’s transfer functions, (40) and (41), 
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Fig. 3. Block diagram with transfer functions 



have simplified forms; their characteristic 
polynomial is of second order. 
 

4. SYSTEM’S STABILITY 
 
 According to algebraic Routh-Hurwitz 
criteria, system’s stability is assured if the 
characteristic polynomial’s co-efficient are 
strictly positive. 
 One can observe that, as long as  and 

 are time constants and are strictly positives, 

the first polynomial co-efficient  TCA  is 

s a positive one; although, the other co-
efficient must be analyzed. 

CA

T

alway

 The third co-efficient, , should also 

be a positive one. So, 
DK1

 CAACBB KKKK1  

 
0

1






xB

xCxBBxACB

K

KKKKK
, (43) 

which leads to 

bdad  2
8

2
6 , (44) 

where the used annotations are 

   100
2

0077 QyppSba ACC  

  600
2

006 QxppS BCAd  : 

: 
2

0
2
110770

2

4






 


 HdC pdubxS ;  

 










 





0

2
00

607700 04

xppS

pSxbyx
b

BCA

HAd

 












 




2

0
2
110770

2

4 HdBCel pdubxSSk   

  





 100

2
00

2
Qypp AC . (45) 

 The above-determined relation (44) may be 
graphically expressed as a domain of stability 
into a co-ordinates system  , as fig. 4.a 

shows. As far as these two drossel diameters 
are strictly positive, the diagram is relevant 
only in the positive side of its axis. It results a 
stability domain, as well as an instability 
domain on the diagram’s surface. An 

observation may occur, concerning the (8)-
drossel absence, when the drossel (8) should 
have a minimum value   in order to 

keep the system’s stability.   
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 The second characteristic polynomial’s co-
efficient must be also positive 
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positive, as well as the term 

Cy

0

0

yk

pS
K yC

1

el

CC , 

determined by strictly positive factors. 
Moreover, one considers the first stability 
condition as fulfilled, meaning , so 
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Fig. 4. System’s stability conditions 
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 Considering (28), (32) and (42) annotations 
one obtains for (46) the expression 

   0
2

1

1
CelC

DCA

VkS
Kk




 , (47) 

which represents the second stability condition 
of the system; it could be graphically 
expressed as fig. 4.b) shows, which offers the 
possibility to choose the surface area of the 
actuator’s piston  with respect to the 

friction co-efficient 
CS

 . The same diagram 

shows a minimum piston area CS value, 

when piston motion would occur, 
hypothetically, frictionless. 

0 0.5 1 2 2.5 31.5
0

0.01

0.02

0.03

0.04

 For usual friction  values, actuator’s 
piston area should be chosen in the range of 
(30 50) cm 2. 
 Stability studies may be extended, in order 
to determine the periodic/aperiodic stability 
domains; one has to verify the characteristic 
polynomial’s discriminant sign as well as its 
roots locus. 
 

5. SYSTEM’S QUALITY 
 
 Based on the block diagram in fig. 3, one 
has performed a simulation, concerning 
system’s step response, for a constant flight 

regime. One has simulated a step input of 
2p , 

for two different situations, involving two 
values and one has evaluate system’s time 

response, depicted in fig. 5.  


In both of the above-mentioned situations 
the system is a stable-one. When the friction 
co-efficient’s value is small, system’s stability 
is periodic-type, with an initial 10% override 
and a response time around 1.2 seconds, while 
when the friction grows, the stability becomes 
aperiodic and the response time increases too.  

 
 

6. CONCLUSIONS 
 
 The studied pneumatic anti-stall valve’s 
opening system is a second order control 
system, as its transfer function shows. 
 Because of its working fluid (air) 
compressibility, this kind of systems are less 
precisely, but very effective for a wide range 
of compressors. Compressibility factor   is 
found in many mathematical model co-
efficient expressions (see (28)-expressions) 
and has an important influence above system’s 
behavior. 
 Based on the simplified linearized 
mathematical model the authors have studied 
the stability of the system and, subsequently, 
have determined two graphic stability 
conditions, involving relations between 
constructive and functional parameters, which 
may be used by engine designers during the 
pre-design phases. 
 One has also performed a simulation, 
concerning system’s quality, estimated 
through system’s step response, for a step 

input of the main system parameter, 
2p . The 

conclusion is that system’s behavior depends 
on the friction co-efficient values, which 
means that it depends on the materials 
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Fig. 5. System’s quality 



combination used for the actuator’s 
manufacturing. 
 If the friction co-efficient is very low, even 
if the system is stable and its time response is 
small, its stability is periodically type, which is 
unacceptable from the compressor’s operating 
point of view, because anti-stall valve’s 
periodic opening induces itself an unstable 
flow through the compressor, acting contrary 
to its main objective. 
 If the friction co-efficient is enough high, 
system’s stability becomes aperiodic, which is 
acceptable, even if the stabilization time 
increases (from 1.2 seconds to 2.5 seconds), 
which means that the system becomes slower. 
Consequently, a very important aspect of the 
system design is the choice of manufacturing 
materials, especially concerning the friction 
co-efficient between actuator’s piston and 
cylinder materials. 
 The study is useful for aerospace students, 
engineers and professionals and may be 
extended for similar systems’ analysis, as well 
as for further studies concerning axial 
compressors control systems, or embedded jet 
engine control systems. 
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