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Abstract: The phenomenon of stimulated optical transition in anisotropic crystals that has
been experimentally studied in our quantum lab; both its mathematical modeling and numerical
simulation are approached. In order to evaluate the stimulated transition probability a revision of
the perturbation theory equations is performed. For these equations the states spectrum of a
guantum system being perturbated by an other system (in the frame of the quantum physics
Hilbert space) is considered. Our formalization acts in accordance with the formal framework of
information theory (characterized by: entropy, conditional entropy and mutual information)
applied to two sources that interact, one being a perturbation of the other. In order to perform the
numerical simulation the analytical relations are systematized. Some particular temporal patterns
of the perturbation (e.g. (quasi) -rectangular or (envelope) -sinus, mono-pulse) and their
corresponding transition probabilities are analyzed, then normalized and afterwards graphically
represented using MathCAD.
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1. INTRODUCTION

The mathematical modeling and computer numerical simulation are necessary steps in
the design of engineering quantum optics applications for quantum information
processing.

But [1] “these subjects follow either a semi-classical approach (often oversimplified),
or a full quantum approach (often too difficult)”. This is the motivation for this revised
physical modeling based on mathematical rigorous description.

In order to numerically evaluate the stimulated transition probability of a system when
interacting with an other system (in the frame of the quantum physics Hilbert space [2]) a
revision of the perturbation theory equations is performed in agreement with the
requirements of our software tool (mathCAD).

This formalization is in accordance with the formal framework of the information
theory applied to the interaction of two sources, one of each being the perturbation of the
other. The entropy, conditional entropy and mutual information are described.

In the case of quantum optics applications, when one desires to transmit information
using “photons” it is unrealistic to work with planar harmonic waves, requiring “wave
packets" delimited in time and space [3]. Instead, the impulsive waveforms are used,
enabling the study of the temporal behaviour of both perturbation and light stimulated
atoms.
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Thus, the modeling and simulation succeeds to overcome the previously encountered
difficulties as follows: a) to understand the treatment with real and complex signal
representation (Fourier) for engineering applications; b)-to solve the equations
complicated due to too many qualitative and quantitative approximations; c)- to be in
agreement with the software requirements.

2. THE EVOLUTION OF STIMULATED QUANTUM SYSTEMS
Qualitative considerations

We perform a qualitative analysis with C” class functions, as follows:
* g astimulated quantum system: 4 :[t,,t,] > @

= { aperturbing quantum system (e.g. electromagnetic field): £, :[t,,t,]x® — X
+0  teltyut)ct,ut,) $,,=9=¢,
b = {= D telt, t]l-(t) - Imd, =¢,,=9
= the Taylor formal series after the control parameter 7 € ®

o<, 2 (9% 1 (0°¢ -
é/t,r]zé/t,o-'-i. J +77_ —tzﬁ +’ - —tr"7 = t,n
1\ opn =0 2! on )0 r\ on

_ ~<0> <1> 2 <2> . <0> __ <0> __ _
é/t,n_ o TG0 +1°Clo Fees t _é,t,n’ t.0 _é’t’O_Q

Con=1"Co +1° &y +... 50 for p — 0, asymptotically &, =n-&5

We emphasize the following algebraic structuring:
= intensive composition of a disjoint systems ae @ & be B, disjoint anb=J=bna:
c=a®b:@x%—>C binary composition law, (“superposition” by interaction),
intensive in the sense that any event @, in the compound system a@b is defined by
0,q, = 0, A @,, the intensive composition of an event @, in the system a with an event
o, inthesystem b ; we have a®b=b®a, a®d=Ida=a.
= hybrid composition ([a] and | ¢ | isolated systems) as a limiting case of integrated

compound case: a & ¢ = H[al%’r?ﬁm(a D), { &a= G(!j}r’ra]%aj(g Da).

= absence of perturbation in composition (at 7:=0 or t:=t, or t:=t,):
(@90)=@®D) =a  ((Da),=(DDa) =¢

(a® é’)tm =(a® @)to =a, (¢ @a)tm =(J® a)to =a,

(a® é’)t*’ﬂ =(@®9), =4, (O a)t*],7 =(J®a), =a,

= interaction reduces non-interaction: C®@a Cc{ &a=a &L 2a®C and we define:
protocol (agreement) subsystems:

all=all=0&a-C®Pa {bya, la=l1la=a&{—-a®f aby
all=0 < (Pa=¢ &a Cla=@ < a®C=a&(

(aL é/)t,q = é/t,r] &a, _é/t,q Da, ¢ J—a)t,r] =a &é,t,r] — 4 ®é/t,77

and we have (a L&) =({ La), that is the protocol is mutual.

= the protocol is disjunctively filled with the composition

@LlN(E®a) =D, (al)U(EOa)=¢&a, (Da=({&a)—(aLll)
(€ La)n@®) =9, ((La)u(@®)=a&(, a®F=(a&)—(¢ La)
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= the absence of perturbation abolishes the protocols:
@ld)o=010=0&0-a®F=a-a,=D;a, L =(,La =0

(alQ),,=a LO=a &JD—a ©D=a —a =90

(@ald),=a LO=aq &JID—a ®D=q —a =D;a L¢ ,=¢ ,Lla =0
= conditioning:
¢la=da, ({a),, =¢,, |a, the perturbing ¢ under conditions imposed by 4

—

al=alg, (a|f),, =a.|¢,, the chosen system a under conditions imposed by ¢

"imposed conditions' = ""constitutive laws' of the interaction
= the absence of perturbation abolishes conditionalities:

(@|)o=a 0= (al{),,=a,|d=C (@&, ,=a, |9=D
(fla)o=D|a, =0 ({]a),,=D]|a, =L ¢la), ,=Dla, =0
= conditionalities are disjunctively complemented by protocols
@[8)n(@Lll)=9, a=@[0)&(@LL), all=a—(a]C)
Cla)n(CLa)=F, C=(Cla)&(CLa), CLa=C—(Cla)
= conditionalities determine the compositions (general relations of interactions)
a®¢=@&)-(¢La)=a&{-[{-(J]a)]=[(a&{)-1&({|a) =a&({]a)
(@a=(C&a)—(aL)=C&a-[a—(a|)]=[(¢ &a)-a]&(a| )= &(a|S)
1&(C|a)=a®C=CBa=C&(a|L), a&(()=a&L=C&a=C&(a)

These relationships, about the idea of of interaction system vs. perturbation, are in
agreement with the formal framework of information theory: regarding: state vs

probability / entropy, protocol vs mutual information / transinformation, interaction vs
conditional probabillity / conditional entropy.

3. QUANTITATIVE OPERATOR CONSIDERATIONS

According to quantum physics we have the self-adjoint operators:
* o temporal pulse operator (o, , co(;tn , m(a@fé)tn)

= H hamiltonian operator (H, , H. , H

H
7

(‘Z@;)t,q)

= the quantum temporal condition (operator format): H=7-®

= the total time derivation of an operator A using the Hamiltonian commutator:
dA/dt=0A/ot+[H,A] sothat dH/dt =0H/ot +[H,H]=0H/ot
The general relationships of the quantitative form of interaction are:
@ - integrated composition: H, +H, =H_ e, =H4e, =H. +H
& - hybrid composition (¢'|a=¢): H, +H, =He, =H e, =H,
For the isolated (unperturbed - time stationary) system a we have dq, /0t =< and the

time flows uniformly (6H, /ot=0), so that dH, /dt=0H, /ot=0; H, =H,.

= the equations with eigen states and values are: H_ -s, =E, -s,, ®, S, =®,S,; with

E, =%h-w, &spectral differences: EP" =E -E , o"" =0, —®,; EP" =h-o"".

m p! m p?’

(a‘é’)!,q
T H u

= the orthonormal basis {s, | n € §} of eigenstates has the properties:
<Sp‘sm> :<sp"|sm>:§;n =dy, :<Sp"|sm>' <sp"|sn>'<sn|'|sm>:5; Oy
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YA CARCHEENAD AT RCHEI DEDICIRCH
" the quantum state of (isolated) a;, in general format, is a linear combinations
v, =2.Cl-S, & ¢l /c) =e ) (Schrodinger eq.) hence w, =) c) -e" s,
where usually t, :=t, :=0.

We analyze the state for hybrid system a & ¢ =¢ &a vs. for composed system a @ ¢ ;
so H,+H, =H_ ¢ =H_,, =H,+H, and we have two formats:
» format: a®=a&{—((La)=¢&a—(aLll)={Da
H,+H,-H,,=Hs =H,,=H,+H,-H_,
H,,=H,+H,-H,, H,,=H,+H, -H,
H +H,=H,, =H,, =H,+H < H,  =0=H,
» format: ¢ & (' |a)=a @ = Da={&(a|{), H,+H, , =H,, =H ., =H, +H_,
H,, =H,, —H, (perturbant hamiltonian) H . :=H 5, —H_ (perturbed hamiltonian)
Ha"'Hg:Ha@g:H;@a:H;"'Ha & la=d &ald=a

We describe perturbing action in the format H .. =H, +H,,, as follows:
= the quantum system state a@¢ (general format) is y,.. =Y cl.. -s, Where
t ty t ty
n
n n __ AN — n AN
Choc, G, Decause a interacts with £'; Coocy =Car Voo, =Wa Cop@cy, = Cay
— j— n .
wato ®§lo‘q =\|I‘1t0 ! \Ijalg ®§[0,q _ancfhg ®§[0,q Sn )
n n
H . = H C“t®§t,q Cal®§t,77 .. N .
= we practice a double coefficient relativization e et - aec, SO that:
c.lc, e Rt
a 4y
N . alon(t-t) n _.n .o (t-tg) n __ AN . al'oy(t-tg)
Vaos, = Caoq, © » Caon, =Vaoq, ' Yaos,, = Caon, € !
n._aAN i-o,-(t—tg) n _ An n N —i-w,-(t-t) n _ . n q-iop(t-ty)
7/ '_C € ’ ! yﬂto_c%’ C"‘t®§t‘0_7/‘lt®§t‘o.e ’ ! C‘h_]/”‘t.e ’ !
_ _ AN AN _.n
y‘ll ! “f0®4‘01 C“‘o®§f0v'7 _C"to o 7/‘1!0
. the state vectors are:
_ |a)n-(t—t0)_ _ no. _ no.
Wa[(-B{“] _Z ‘11@{1; Zyal(‘B{“] Sn ! \I"lto _an‘() Sn _27‘110 Sn Where
n n n

“l"atO@é’toﬂ E\‘l‘!a(o@@ _“ljato
- If ! ZZC:LP'SNEZC:LZ: s, then ylp. =>c .5, and the probability
P Sto.n7 t¥5ty

- a‘®:t‘77
n

=P, to find a in the state 7o, =>c™ ... represent the probability

‘l’,zo ’_)"VZ:@Q .t - Geg, "
that the system a to perform in the temporal interval [t,,t] transition from state y in
the state y" aoc, OF otherwise, from state y° in the state ™ is:

109ty Aoty DCotg
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2

nlm
ant@qq S”">

n'

2
SHISL TR (N0 T ) S
7.ty wfto}—)wz@;‘v” Wﬂt®§t,z; \Ilat(Bgl,r] ~ ST n

2
n p n |m . <S |S > — n'lp . n"|m n|p n|m
”1®§t n ”t@ S n'|=n" - a4, ®Cy , Yeqt, 4 ®Cy, ‘11@51 "
] 2
mp _ Z nlp g e (tt) , nim g hen(t= to) nlp nim
We have also: Pt Yaoc, " Yaoc, o¢, Vaos,

We proceed to perturbatlon series expansion of interaction hamlltonlan:

oH 2 (9°H
H, . =H., . 0| e | T . TLL
e ot on _ 2! on
n:=0 7:=0

but vt, !)er) He = =H,, =H;=0,s0

H?t,o|ax

oH 2 (0°H
He S/ L R —%”‘al =0,
t, 19 ]-l an 2! 877 t, 19
7:=0 7:=0

- ﬂét,;ﬂ“t =

oH
. Sipla 77 Siplay
H,  =H.  +n-R, L H, = ) 2 3
Ciylar Geolaw TP ol [ on ]77-—0 ke r![ on' J 0
= 7=

. =limg,  =lim e _[ Wi %0
Ct,0|11t - 4t,r,|‘lt B B
7:=0

H, . /m isthe parametric Hamiltonian perturbation mean density:

n—0 n—0 n 877

H, =09, .+ o(r%), for n — 0, asymptotic: Ho o =0 H,

Sty Oa - H“t +H§t.v|ﬂz = Hat +7- }[C gl = Haz /A ‘7{4 olat
= The Schrddinger equation [2] for the system is:
|hM = H-y(t) or in matriceal form: i-7 '%hl’(t» = [H]-|\|;(t)> and we apply:
. a‘l’al(-B{“
I.h. at = al®§l,77 .\th@gn_q = Hat “‘l‘!a[@gw +77.}[§t‘0|‘1t .\Vat(Bé’w] y

h %“I’at@g” > = [Hat@;w I- “I’at@g,,> ARVE %‘Wat(@{”] > = [Hat('B{m] I- “I’at@gq>
we project this equation on an eigenstates, of H, =H,:

0 m
Werseloo) o1 g oo s v,

_ n _ n —i-w, - (t-ty)
wat@gt,q _an!eag[,q .Sn _Zj/at@g!,r] "€ ’ .Sn
n

n
< Voo, > <an@a,, n5m>=ZCZ@¢I,”'<Sn|S> Z%@a, 0 =Croc,
> <\|la!®{‘]‘H >:<\|’at®gq‘Hat 'Sm>:<\|’at@gh,7 Em'Sm>

<Ha[ Ve,
Sm> - Em .Zn:C:t@(m '<Sn |Sm> = Em .;C:‘@gl,ﬂ .5:‘ - Em .C‘T@Qn

n
= Em '<ant®§w Sy

n

I-%-

a Vaoc, sm> with:
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(s o Vo, [Sn) = (Waroc, |70 0 +Sm) = (Waoce, | #e o *Sn)
:<‘l'at@a,\-[ﬂwt]-ﬂ%wﬁ@;, 00 T )
<Wﬂt®¢u‘ (Z|S ()17, T-[5m)

:Z<‘|’at@aﬂ '|S ) <S 1A 0] |5 )= Z<‘Val®¢t,

and with the notation (s, |- [,

Ctola
Schrddinger equation we obtain:

) (5l [P 1 [50)

I-|s)=9""(t) , after some elementary calculations in

he e ST ()€

In this equation we develop ;/2 o, aSapower seriesin 77,
77

67” 2 62 n n
n n 77 at®§t.q 77 at®§tq n . at®§1q
= | | | — Fo, G E— ———
ytq@ﬁy,] 7@@{110 1! [ 677 J 2| [ 877 J gt, r' ( 877 \J
7:=0 n:=0 7:=0

r
n . n AN n _ .n n 2 n n _ _n n _ _n
Sto = Vaos, =Var Voo, =Sto T Ga T "Gio T Gro =Var S0 = Ve,

Cn

m _ m m 2 m m __ . m m o _ . m _ .m
Yaos, =50 T GiatI Grat e Gro = Ve v St0 = Ve, =Cay %®gm]
n

n _.n n 2 n __ AN n
Vag®0y = 5t.0 T Stoa T Gy o T € =C +77'gt0,1+77 'gto,z
_ n 2 n _.n _ n _
0=77'gt0,1+77 "Gig2 Teees o_gto,l_gto,Z_

__ AN
a4, Oy C“!o

. 0 m m m n,m i-0™™(t-t, n n n
he et G +.]=n- 2 7" ()" gl 40l + ]
and by identifying the coefficients, we obtain the system of differential equations:

. dgh N e e
|.h._t'0:O,|.h._t*l: HM() e (t-to) | -n '
at at En, t) St,0

. d m N s onm . d mr - s onm
i-7- g;:z _ Z}[nm(t) e (t-to) | g_tn’l i - g; _ z}[n,m (t) e (tt) | gtijr—l
n n

which can be solved iteratively.
4. TRANSITION PROBABILITY

We consider the possibility of transitions s s, (type m|p) with probability

P =lce. I, where ¢l2. =12, e ™) and:

® Vaba, =606 TGE 1T Gy Hens Gl5 =Va' s Guo =Var =Cot =53,

* 7:,1)’294[0 —§t2|p+77 gtn”i"'n gtr;lp g 7:|p_gtr;|p +n: gtn“i+77 gtF;IP

¢ Val SVl AN Gh N Gy e 0= G0 1 Gl +, 0= —gtﬂ'é =
o Coby, =(c +mglf +n’ gt”'z"+---)-e"""" )

o Chb, = gt gy ) e
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- dory’ mp _ _mlp _mp _mp _ gm  _njp _ on
¢ Th— =02V G =60 =T, =Gy =0 G0 =5,
for m# p and 0%, —0 we have [, =n-g/f*-e" ™,
| |
i- dgtmlp Z}[nm(t) e M(t-ty) gtn|0p -. dgtmlp Z}[nm(t) e M. (t-to) '5n
1 p H
dgm|p eflwp t — om
T ~H P (t)-e" " and by integration I...-dt' with t, <t <t, result:
|.
to
—ioPM, ipPm g .
G —gMP = — - -I?fp’m(t')-e"“ Codt' with 0=¢"? and 0" =@, —w, So:
0 i- 0+
to
e—iwp'm-to t -
6P = — -I}[p’m(t') "t with: ¢, =n-g1 e we have:
t
n.efi-(a)m-tfa)p-to) t R
o, = 7 -I}[”*’"(t')-e"'“' *.dt" and the transition probability is:
t tn I .

t

2 e )

ant'lfo :l C:!]leggl,q |2; (%j . I}[Pvm(t') . e_|-a)p' -t . dtl
to

For the entire duration of the perturbation (t:=t, =t, +T ):

—i(og oy ty)

jﬂpm(t) R

m|p :77 €

a, ®C,., — i-h

n i i
A, At 2( 1] [0
to

Introducing the complex representation:

t, 2

t, t, )
Hit (w) = I P (t)-e e dt, AT (~) = I P (t)-e" " - dt we have:

to to

77 . efl (o t—optg) | | 77 2
m ~ p,m ,m m ] m 2o p.m my |2
Ca[*lp@gt*,n = i 7 'j;[to,t* (_a)p ) F)nt’|)t0 _| a, Zagw | =(%j '|}_[t0,t* (_a)p )|

5. TEMPORAL PERTURBATION — MONOPULS

In this case the perturbant hamiltonian is H, .=nW- h(t) where %/ is a structural
ut) te(t,t)c(t,.ty)
0 teft, t,1-(t,t.)
|u(t) [£1; we define: ¢, = p(t) = Arccos[u(t)] the temporal phase of perturbation, so

ut)y=cos(p), 6,=¢. —-¢,=a,-T, T:=t -t is the duration of perturbation.
Particular forms of general relations are:

j{ _ aHéVtH“t _ awaﬂ‘lt _Wh(t) ‘W —'f(/[/p'm —h p.m
Suoler = 877 ’7:_0_ 677 B <SP"[ ]'|Sm>_' =h-w

(atemporal) operator, and h(t) ::{ with a temporal form factor
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HOT (W) = (S, | [#H,, 10 1 [Sm) = (S, |- [W]-[s0) - NE) = WP -h(t) = - P - ()
P 'gto,t* (a))’ gto,t* (a’) = ]:U(t) ' eii.w.t -dt

to

t,
HT (@) =h-wP" 'IU(t)-e—"‘”'t dt=rh-w
t

—i(ont-0, 1)t
—i-(oy t-w,ty) , ,
Pl P 'Qto,t(a)pm)

e oopm o .
crle = S HPT(E) e dt =i
@O, i 7 t_!: (t) n
the transition probability is:
P e, Pen-wP™ [ ou, (@P™) P P = 5w P lu, (@™ [; we calculate
—i-m-t, i-(6,-0) 1 y —i-(6,+6) 1 N
gto't* (a)) _ (5] . e' - g% _ € ' - e "0 (1)
2-1 P, -0 @ -0 P to ¢ +o

—i-wt, i-(6,-0) —i-(6,+0)
for: o, =x/2 result u,_ (a)):e - el - Il | & . - Il
2 P, —0 Q@ P, To 2 T
6. TIME PERTURBATION - RECTANGULAR MONOPULS

In this case the “temporal perturbation - monopuls® has u(t) =1, ¢, = Arccos(l) =0,
u(t):=cosQ) =1, 0=6, =9, —¢, =, T and the width of the time window of the

perturbation is timed with a own clock, locked @, =6, /T =0; 0(®,,T)=06, ; =6,=0

& 016,=wlw,=x. In the relation (1) we have ¢'=0 and by direct calculation
—i{ otg+—
(including the prolongation by continuity) we obtain u, . (@) =T -e [ j smc(zj o)

Pty - w™ P -lug (@) P n-wP™ [P (T/2)* - g4’ (0™™) = P37

u”(e):4-{sinc(gﬂ , 1 (o) :=4-{sinc(w%ﬂ .y (F,T)=4-[sinc(z- f-T)P

= The transition probability, with some versions, is:

P = n-w™™ [ -gr (@), gr (o) :={T~sinc(m-%ﬂ , 9(f,T)=T-x(1.T)

7T =

2(F,T):=T [sinc(z- f -T)] where T;((f,T)-df =1& TIimoo;((f,T) =0o(f)

The approximation with & -Dirac distribution is often used in qualitative analyzes. We
have MathCAD representations (fig. 1) for the laser THz domain. For a given frequency
the transition probability varies periodically with the duration of perturbation (fig. 2).
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FIG. 1. Rectangular perturbation mono-pulse case: (a) transition probability factor in our laser frequencies
domain frequency for different durations of perturbation; (b) ¢ -Dirac approximation
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— —0.6328 =211 —— =473.755 T _0.451
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FIG. 2. Rectangular perturbation mono-pulse case:
transition probability factor (for a given laser frequency) vs duration duration of perturbation

7. TIME PERTURBATION — SINUSOIDAL MONOPULS

In this case we have u(t):=cos(p,), ¢, =a,-t-t)+¢,; o,=2-7-1,, T, =1/f,,
0, =lo,-t.—t)+o]l-p,=w,-T, &:=cw-T and the width of the time window of the
perturbation is timed with a own clock @, =6,/T & 6/6, =w/,. In the relation (1)
@', = m, and by direct calculation (including the prolongation by continuity) we obtain:

el(gu _9) _l e—|(0u+9) —l
— — . +
(gu _ 9) . e—l.(ptD (eu n 9) . el'(plo | a)l a)O
! (a)) B T e—i~a)0 ‘o | e—i~2~9u _1 o 8 = ,T
ot 2 i e’ 2.6,-e'" C G=a, T
ei»2-6u -1 i
T + io W =—,
2-6,-e7 e"

= The transition probability, with some universal functions, is:
Prae, =lm-wP™ [P -y, (@P™) P n-wP" P (T12)° - 17 (0P, 0, 000) = Py
where, in complex format we have

353



APPLIED MATHEMATICS, COMPUTER SCIENCE & IT

u, . (@)
1 (0,00,00) = 1> (0T, 00 T,0), 11°(0,6,,0) = t?/2 ‘
1 | ei‘zﬁ‘(fo—f)‘T -1 e—i-27r-(f0+f)-T _1|2
2 2 ' —i- - i | f |¢ fO
47[ T ‘(fo—f).e %0 (f0+f)_e(ﬂo
us (F.7, fo,000) = ) 2
| e4mhT _q i |
=i + i | f |= fO
‘47z'foTe % al

or in real format
15 (1.7, £, 0, ) =[sinc(z - (f, — £))F +[sinc(z - (f, + f)F
+2-sinc(z-(f,—f))-sinc(z-(f,+ f))-cos@-(z- f,- T +¢,))
This sinusoidal monopuls is an ideal approximation of a more realistic case
(MathCAD represented in fig. 3). With reduced notation u(f,T, fy,7/2)=pu(f,T) we

have (fig. 4) the frequency spectrum in the approximate idealized rectangular envelope
for sinusoidal perturbation.
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FIG. 3. Sinusoidal perturbation mono-puls case:
(a) realistic sinusoidal envelope; (b) idealized rectangular envelope
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FIG. 4. The frequency spectrum
sinusoidal perturbation mono-puls case, idealized rectangular envelope
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8. ON THT SECOND-ORDER APPROXIMATION

If the initial s, & final s, states (p=m) are not directly coupled by perturbation

Hamiltonian H, | =#n-7, . (1 - order approximation !) because #*™(t)=0, but if
s, & s are indirectly coupled via a states s, we evaluate (2" - order approximation !)

(S, 8p) = Z(sp S, —S,,) in the context of the superposition principle of quantum
n

physics states, as follows:
pmip = cmip |2:| cmip |2 cmip mlp _e7i~wm~(tfto), ymlp E772_gtrT12|p and

7.1ty 4 ®Cy , @, ! Ya ®G, = }/at®§t‘)7 4 ®S ,
. d mlp sooonm T s < i oonm R R
i % =D [e MM () e g{1P], 2™ - order approximation, based on:
n=m
e7i~wp'"~t0 t )
P =ﬁ-fﬂp'”(t')-e"‘“ “t.dt'=0 1%- order approximation; by integration:
, 3

to

m e_i-a)pvﬂkto t " v ' N /et nmzen MO LTI
gt,ép = (ih)z z[J‘dt J’dt}[p' (t)-]—[ ’ (t ).e( t t):|
n tO tO

77 4
mp  ~
P :(%) .

The approximate calculation of this iterated integration has led (for example in the
rectangular monopuls, single intermediate energy level at £ =50- %) to the relationship:

mp .4 n nm |2 2 . 2'Sin(ﬂ-' f T) iz f-T
P,]’tﬁto:n'|wp W | '|\]1—[| !Jl‘[(flTl‘c“)'_i.SZ.(Z.ﬂ__f)Z.e

The maximization of the transition does not coincide with the laser frequency (fig. 5).
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FIG. 5. Second order approximation factor (of transition probability) frequency analysis
rectangular perturbation mono-pulse case: (a) normalized modulus; (b) phase of factor

9. CONCLUSIONS

= Both mathematical modeling and numerical simulation of stimulated transition
probabilities for quantum optics have been performed.

= Revised perturbation theory equations in the states spectrum of a quantum system
have been established in order to evaluate the stimulated transition probability (in the
quantum physics Hilbert space).
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= The formalization is in accordance with the formal framework of information
theory (regarding: entropy, conditional entropy and mutual information adapted to the
Hamiltonian Formalism).

= The operatorial relationships have been used distinctly from matrix-type
relationships (Dirac formalism with “bra” and “ket”) and have been intended exclusively
for the numerical simulation.

= Analytical relations have been rewritten and systematized

= Particular temporal patterns, (quasi)-rectangular or (envelope)-sinusoidal,
mono-pulse of the perturbation and corresponding transition probabilities were analyzed
and represented normalized by MathCAD.
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