FIXED POINT THEOREM FOR φ_M -GERAGHTY CONTRACTIONS

Alexandrina Maria PROCA

"Transilvania" University of Braşov, Romania (alexproca@unitbv.ro)

DOI: 10.19062/2247-3173.2018.20.41

Abstract: In this paper we extend the result of Geraghty([4],[5]) about φ - contractions, starting from the papers of O.Popescu([7]) respectively A.Fulga, A. Proca ([2]). We introduce a new notation and we establish a fixed point theorem for such mapping in a complete metric space. **Keywords:** fixed point, φ - contractions, contractions.

1. INTRODUCTION

Because of its importance in mathematics and specially in fixed point theory, a lot of authors ([6],[7],[8],[9]) gave generalizations of Banach contraction principle [1]. One of the most well-known generalizations is given by Geraghty[5].

In this paper, starting from [7] and [2], we introduce the notion of φ_M -Geraghty contraction and prove a fixed point theorem for φ_M -contractions, which generalized theorem (1.1).

Theoreme (1.1) Let (X,d) be a complete metric space and T:X \rightarrow X be an operator. If T satisfies the following inequality:

$$d(Tx,Ty) \le \varphi(d(x,y)) \cdot d(x,y), \forall x, y \in X,$$
(1.1)

where $\varphi: [0, \infty) \rightarrow [0, 1)$ is a function which satisfies the condition

 $\lim_{n \to \infty} \varphi(t_n) = 1 \Rightarrow \lim_{n \to \infty} t_n = 0$

then T has a unique fixed point.

2. MAIN RESULTS

(1.2)

Definition (2.1) Let (X,d) be a metric space. A mapping T:X \rightarrow X is said to be a $\varphi_{\mathbb{E}}$ -Geraghty contraction on (X,d) if there exists $\varphi \in \emptyset$ such that

$$d(Tx,Ty) \le \varphi(E(x,y))E(x,y), \forall x, y \in X,$$

where

E(x,y) = d(x,y) + |d(x,Tx) - d(y,Ty)|

and \emptyset denote the class of functions $\varphi: [0, \infty) \to [0, 1)$ which satisfies the condition:

$$\lim_{n \to \infty} \varphi(t_n) = 1 \Rightarrow \lim_{n \to \infty} t_n = 0 \tag{2.1}$$

Theorem (2.1) Let (X,d) be a complete metric space and T:X \rightarrow X be an φ_E -Geraghty contraction. Then T has a unique fixed point $x^* \in X$ and for all $x_0 \in X$ the sequence $\{T^n x_0\}$ is convergent to x^* .

Definition (2.2) Let (X,d) be a metric space. A mapping $T:X \rightarrow X$ is said to be a φ_M –Geraghty contraction on (X,d) if there exists $\varphi \in \emptyset$ such that

$$d(Tx,Ty) \le \varphi(M(x,y))M(x,y)$$
(2.2)

where

$$M(x, y) = \max\{d(x, y) + |d(x, Tx) - d(y, Ty)|; d(x, Tx) + |d(x, y) - d(y, Ty)|;$$
(2.3)
$$d(y, Ty) + |d(x, y) - d(x, Tx)|; \frac{d(x, Ty) + d(y, Tx) + |d(x, Tx) - d(y, Ty)|}{2}\}$$

and \emptyset denote the class of functions $\varphi : [0, \infty) \to [0,1)$ which satisfies the condition: $\lim_{n\to\infty}\varphi(t_n)=1\Rightarrow\lim_{n\to\infty}t_n=0.$

Theorem(2.1) Let (X,d) be a complete metric space and T:X \rightarrow X be φ_M -Geraghty contraction. Then T has a unique fixed point $x^* \in X$ and for all $x_0 \in X$ the sequence $\{T^n x_0\}$ is convergent to x^* .

Demonstration:

Let $x_0 \in X$, arbitrary, fixed, with $x_{n+1} = Tx_n = T^n x_0$, then x_0 is fixed point for T. We can suppose that $x_n \neq x_{n+1}$, for all natural *n* so it results $d(x_n, x_{n+1}) > 0$, $\forall n \in N$. If we denote $d(x_n, x_{n+1}) = d_n$ and put $x = x_n$ and $y = x_{n+1}$ in (2.2)

 $d(Tx,Ty) \leq \varphi(M(x,y)) \cdot M(x,y)$, where $\varphi:[0,\infty) \to [0,1)$ and

 $[\varphi(t_n) \to \mathbf{1}] \Rightarrow t_n \to \mathbf{0}$, we obtain

$$d(Tx_{n}, Tx_{n+1}) \le \varphi(M(x_{n}, x_{n+1})) \cdot M(x_{n}, x_{n+1}).$$

$$M(x_n, x_{n+1}) = \max\{d_n + |d_n - d_{n+1}|; d_n + |d_n - d_{n+1}|, \\ d_{n+1} + |d_n - d_n|, \frac{d(x_n, x_{n+2}) + d(x_{n+1}, x_{n+1}) + |d_n - d_{n+1}||}{2} \}$$

If $d_{n+1} > d_n \Rightarrow$

$$M(x_n, x_{n+1}) = max \left\{ d_{n+1}, \frac{d(x_n, x_{n+2}) + d_{n+1} - d_n}{2} \right\}$$

$$\frac{But}{\frac{d(x_n, x_{n+2}) + d_{n+1} - d_n}{2}} \le \frac{d_n + d_{n+1} + d_{n+1} - d_n}{2} = d_{n+1}$$

So we have $M(x_n, x_{n+1}) = d_{n+1}$. From the assumption on the theorem we get

 $\begin{array}{l} d(x_{n+1}, x_{n+2}) \leq \varphi(d_{n+1}) \cdot d_{n+1}, \text{ and we obtain} \\ d_{n+1} \leq \varphi(d_{n+1}) < d_{n+1}, \end{array}$

which is a contradiction.

If $d_n > d_{n+1}$, we have

$$\begin{split} M\big(x_{n,}x_{n+1}\big) &= max \left\{ 2d_n - d_{n+1}, d_{n+1}, \frac{d(x_n, x_{n+2}) + d_n - d_{n+1}}{2} \right\} \\ & \text{But } 2d_n - d_{n+1} > d_{n+1}, \text{ and} \\ \frac{d(x_n, x_{n+2}) + d_n - d_{n+1}}{2} &\leq \frac{d_n + d_{n+1} + d_n - d_{n+1}}{2} = d_n \\ & 2d_n - d_{n+1} = d_n + (d_n - d_{n+1}) > d_n. \end{split}$$

 $So M(x_n, x_{n+1}) = 2d_n - d_{n+1}$

From the assumption of the theorem, we get

$$d(x_{n+1}, x_{n+2}) \le \varphi(2d_n - d_{n+1}) \cdot (2d_n - d_{n+1})$$

$$d_{n+1} \le \varphi(2d_n - d_{n+1})(2d_n - d_{n+1}) \tag{2.4}$$

 $d_{n+1} \leq 2d_n - d_{n+1}$

Therefore $d_n \ge d_{n+1}, \forall n \in \mathbb{N}$.

Let $d = \lim_{n \to \infty} d_n$ and we suppose that d > 0. Taking the limit as $n \to \infty$ in (2.4) we get

$$d \le \lim_{n \to \infty} [\varphi(2d_n - d_{n+1}) \cdot (2d_n - d_{n+1})] \le \lim_{n \to \infty} (2d_n - d_{n+1})$$

 $d \leq \lim_{n \to \infty} \varphi(2d_n - d_{n+1}) \cdot d \leq d$

$$\Rightarrow \lim_{n \to \infty} \varphi(2d_n - d_{n+1}) = 1 \qquad \Rightarrow \lim_{n \to \infty} (2d_n - d_{n+1}) = 0 \quad \Rightarrow d = 0.$$

We prove now, that $\{x_n\}$ is a Cauchy sequence. Suppose, on the contrary, that there exists $\varepsilon > 0$ and $\{n(k)\}, \{m(k)\} \subset \mathbb{N}, n(k) > m(k) > k$, such that

$$d(x_{n(k)}, x_{m(k)}) \ge \varepsilon, d(x_{n(k)-1}, x_{m(k)}) < \varepsilon, (\forall)k \in \mathbb{N}.$$
(2.5)

Using the triangle inequality and (2.5), we get:

$$\varepsilon \le d(x_{n(k)}, x_{m(k)}) \le d(x_{n(k)}, x_{n(k)-1}) + d(x_{n(k)-1}, x_{m(k)}).$$
(2.6)

Taking the limit as $k \to \infty$ in (2.6) and using (2.5) we obtain

$$\lim_{n \to \infty} d(x_{n(k)}, x_{m(k)}) = \varepsilon$$
(2.7)

Also

.

$$\begin{aligned} \left| d \left(x_{n(k)+1}, x_{m(k)+1} \right) - d \left(x_{n(k)}, x_{m(k)} \right) \right| &\leq \\ &\leq d \left(x_{n(k)}, x_{n(k)+1} \right) + d \left(x_{m(k)}, x_{m(k)+1} \right), \end{aligned}$$

$$\begin{aligned} & \text{and } \lim_{n \to \infty} d \left(x_{n(k)+1}, x_{m(k)+1} \right) = \varepsilon \\ & \text{Putting } x = x_{n(k)-1}, y = x_{m(k)-1} \text{ in relation } (2.2) \text{ we deduce} \end{aligned}$$

$$(2.8)$$

$$\varepsilon \leq d(x_{n(k)}, x_{m(k)}) \leq$$

$$\leq \varphi \left(M(x_{n(k)-1}, x_{m(k)-1}) \right) \cdot M(x_{n(k)-1}, x_{m(k)-1}), (\forall) k \in \mathbb{N}.$$
(2.9)

where

$$\begin{split} &M(x_{n(k)-1}, x_{m(k)-1}) = \\ &\max \left\{ d \left(x_{n(k)-1}, x_{m(k)-1} \right) + \left| d \left(x_{n(k)-1}, x_{n(k)} \right) - d \left(x_{m(k)-1}, x_{m(k)} \right) \right|, \\ &d \left(x_{n(k)-1}, x_{n(k)} \right) + \left| d \left(x_{n(k)-1}, x_{m(k)-1} \right) - d \left(x_{m(k)-1}, x_{m(k)} \right) \right|, \\ &d \left(x_{m(k)-1}, x_{n(k)} \right) + \left| d \left(x_{n(k)-1}, x_{m(k)-1} \right) - d \left(x_{n(k)-1}, x_{m(k)} \right) \right|, \\ &\frac{1}{2} \left[d \left(x_{n(k)-1}, x_{m(k)} \right) + d \left(x_{m(k)-1}, x_{n(k)} \right) + \left| d \left(x_{n(k)-1}, x_{n(k)} \right) - d \left(x_{m(k)-1}, x_{m(k)} \right) \right| \right] \right\} \end{split}$$

We observe that

$$\lim_{k \to \infty} M(x_{n(k)-1}, x_{m(k)-1}) = \varepsilon > 0$$
(2.10)

Taking the limit as $k \to \infty$ in (2.9) and using (2.10) we obtain

$$\begin{split} \varepsilon &\leq \lim_{k \to \infty} d(x_{n(k)-1}, x_{m(k)-1}) \leq \\ &\leq \lim_{k \to \infty} \left[\varphi \left(M(x_{n(k)-1}, x_{m(k)-1}) \right) \cdot M(x_{n(k)-1}, x_{m(k)-1}) \right] < \varepsilon, \\ &\text{and} \\ &\lim_{k \to \infty} \left(M(x_{n(k)-1}, x_{m(k)-1}) \right) \cdot \varepsilon = \varepsilon, \\ &\text{so} \\ &\lim_{k \to \infty} \varphi \left(M(x_{n(k)-1}, x_{m(k)-1}) \right) = 1 \Rightarrow \\ &\Rightarrow \lim_{k \to \infty} M(x_{n(k)-1}, x_{m(k)-1}) = 0, \\ &\text{which is a contradiction.} \\ &\text{Therefore } \{x_n\} \text{ is a Cauchy sequence. By completeness of } (X, d), \{x_n\} \text{ is convergent to} \\ &x^* \in X \text{ and } \lim_{k \to \infty} d(x_n, x^*) = 0 \end{split}$$

$$(2.11)$$

Finally, we will show that $x^* = Tx^*$. We put $x = x_n$ and $y = x^*$ in (2.2):

$$d(Tx_{n'}Tx^*) \le \varphi(M(x_{n'}x^*)) \cdot M(x_{n'}x^*)$$

$$d(x_{n+1}, Tx^*) \le \varphi(M^*(x_n, x^*)) \cdot M^*(x_n, x^*)$$
(2.12)

$$M(x_n, x^*) = max\{d(x_n, x^*) + |d(x_n, Tx_n) - d(x^*, Tx^*)|,$$

$$d(x_n, x_{n+1}) + |d(x_n, x^*) - d(x^*, Tx^*)|,$$

$$d(x^*,Tx^*) + |d(x_n,x_{n+1}) - d(x_n,x^*)|,$$

$$\frac{1}{2}[d(x_n, Tx^*) + d(x^*, x_{n+1}) + |d(x_n, x_{n+1}) - d(x^*, Tx^*)|]$$
(2.13)

$$\lim_{n \to \infty} M(x_n, x^*) = d(x^*, Tx^*)$$
(2.14)

Taking the limit as $n \to \infty$ in (2.12) and using (2.14) we get:

$$d(x^*,Tx^*) \leq \lim_{n \to \infty} \varphi(M(x_n,x^*)) \cdot d(x^*,Tx^*) < d(x^*,Tx^*)$$

$$\lim_{n \to \infty} \varphi \left(M(x_n, x^*) \right) = 1, \lim_{n \to \infty} M(x_n, x^*) = 0 \Rightarrow d(x^*, Tx^*) = 0$$

Hence, $x^* = Tx^*$.

Now, let us to show that *T* has at most one fixed point.

Indeed, if $x^*, y^* \in X$ are two distinct fixed points of T, that is, $Tx^* = x^* \neq y^* = Ty^*$, then

$$0 < d(x^*, y^*) = d(Tx^*, Ty^*) \le \varphi(M(x^*, y^*)) \cdot M(x^*, y^*)$$
(2.15)

Because

$$M(x^*, y^*) = \max\{d(x^*, y^*) + | d(x^*, Tx^*) - d(y^*, Ty^*) |, \\ d(x^*, Tx^*) + | d(x^*, y^*) - d(y^*, Ty^*) |, \\ d(y^*, Ty^*) + | d(x^*, y^*) - d(x^*, Tx^*) |, \\ \frac{d(x^*, Ty^*) + d(y^*, Tx^*) + | d(x^*, Tx^*) - d(y^*, Ty^*) |}{2} \} =$$

 $=d(x^*, y^*)$, it follows from (2.15) that

$$0 < d(x^*, y^*) \le \varphi(d(x^*, y^*))d(x^*, y^*) < d(x^*, y^*).$$

This is a contradiction. Then $d(x^*, y^*) = 0$, so $x^* = y^*$. This proves than the fixed point of T is unique.

REFERENCES

- [1] S.Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, *Fundamenta Mathematicae 3*, 133-181, 1922;
- [2] A.Fulga, A.M.Proca, A new Generalization of Wardowski Fixed Point Theorem in Complete Metric Spaces, Advances in the Theory of Nonlinear Analysis and its Applications, No. 1, 57–63 DOI:10.31197\atnaa.379119, 2017;
- [4] M.Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40, 604-608, 1973;
- [5] M.Geraghty, An improved criterion for fixed points of contraction mappings, *Journal of Mathematical Analysis and Applications*, 48, 811-817, 1974;
- [6] O.Popescu, Some new fixed point theorems for α -Geraghty contraction type maps in metric spaces, *Fixed Point Theory Appl.*, Article ID 329,2013;
- [7] O.Popescu, A new type of contractive mappings in complete metric spaces, submitted;
- [8] E. Karapinar, A discussion on 'α-φ-Geraghty contraction type mappings', Filomat 28,761–766, 2014;
- [9] V. Berinde, Approximating fixed points of week contractions using the Picard iteration, *Nonlinear Anal. Forum*, 9, 45–53,2004.