INDUSTRY PERFORMANCE EVALUATION OF LISTED MILITARY ENTERPRISES BASED ON MINDS MODEL

Wenjing LI, Xiaokai BAI

Department of Defense Economics, Army Logistic University, Chongqing (18971204721@189.cn)

DOI: 10.19062/2247-3173.2018.20.5

Abstract: This paper takes 25 listed military enterprises as the research sample. According to the sample enterprise 2011-2015 years of financial data, the comprehensive technical efficiency, pure technical efficiency and scale effect are calculated by using the MinDS model, determine the size of the sample enterprise revenue stage, and in combination with the original data on the level of its real performance evaluation of the industry. The results show that: the overall performance level of the sample enterprise is not high. There are some differences between the performance level of different industries. It is suggested that the sample enterprises through reform and optimize the industrial structure, to achieve innovation driven development.

Keywords: MinDS model; military enterprises; performance evaluation

1. THE ISSUE RAISED

Military enterprises as an important carrier of civil military integration depth development, shoulder the dual mission of improving national defense science and technology strength and promote the development of the national economy, that is the front position of state-owned enterprise reform. In the past, due to its special properties, military enterprises had to face some problems, such as the lack of effective competition in the industry, the administrative power to intervene, and other issues, that affected the power of enterprise reform to a certain extent. With the introduction of "Guiding Opinions on Promoting The Shareholding System Reform of Military Enterprises", "Interim Measures for the Implementation of the Shareholding System Transformation of Military Enterprises", "Interim Provisions on the Administration of the Intermediary Institutions Involved in the Reform and Listing of Military Enterprises and Institutions" and a series of policies, military enterprises began to take the initiative to adapt to the laws of market economic development, and promote enterprise reform and listing and financing, basically established a modern enterprise system. As of 2016, Chinese military asset securitization rate has exceeded 40%, military enterprises gradually become a real market players. Now, facing the new normal development of the national economy, national defense science and industry of listed enterprises are in the development trend? Real performance level of each industry is to achieve the desired standard? This has become a very concerned problem for decision makers.

For the performance evaluation of China's listed military enterprises, many scholars have done related research. Wu Qing (2007) used super efficiency DEA model to analyze the operational efficiency of listed military enterprises from the angle of input and output efficiency. The conclusion was that the operating conditions of listed military enterprises were mainly determined by the enterprise's own technological advantages, as well as the degree of conversion of technological advantages. Zhang Yong et al. (2014) used the DEA model to analyze the problems and causes of human, financial, scientific, technological, information and other resources in the western region, and gave the countermeasures and suggestions to improve the efficiency of civil military integration in the western region. Zhou Bin (2015) based on VRS conditions, used non - angle SE-SBM model to evaluate the economic efficiency of military and civilian integration industry demonstration base. He proposed that we should pay attention to the relationship between the leading industries and the non-leading industries, taking into account the continuous development of traditional industries and strategic emerging industries. Wang Haitao and Gu Chunwei (2016) studied the production efficiency and the influencing factors of China's military listed enterprises from 2005 to 2014 by using the DEA-Tobit two stage analysis method. The result of the study was that the value of pure technical efficiency was not high, the production efficiency difference between enterprises was more and more big, and the scale wasn't economic and so on. Zhang Ming and Zhang Yaya (2016) used DEA-Malmquist index to measure the efficiency of listed military enterprises restructuring. The results showed that before and after the reform of listed military enterprises, the upgrade in the allocation of resources, resource efficiency and other aspects was not obvious. They suggested that the military enterprises should continue to improve the efficiency through scientific and technological innovation and management and other measures in the process of restructuring.

On the basis of previous studies, this paper takes the 25 national defense science and industry listed enterprises as the research sample, and extracts the financial data of the sample enterprise 2011-2015. MinDS model is used to evaluate the performance level of the sample enterprises in order to provide some reference value for the reform of military enterprises.

2. THE INTRODUCTION OF DATA ENVELOPMENT ANALYSIS AND MINDS MODEL

2.1 The introduction of Data Envelopment Analysis

Data Envelopment Analysis (DEA) is a non-parametric technique efficiency analysis method which is used to compare the Decision Making Unit (DMU). It was first proposed in 1978 by Charnes, Cooper, and Rhodes in the United States, so the first model of DEA was named CCR model (Charnes A, et al., 1978). Technical efficiency refers to the extent to which the production process of a production unit reaches the technical level of the industry that reflect the level of the technical level of a production unit. Based on the assumption of constant returns to scale (CRS), the technical efficiency derived from the CCR model includes the component of scale efficiency (SE), which is often called comprehensive technical efficiency (TE). In 1984, Banker, Charnes and Cooper proposed a DEA model called BCC model based on Variable Returns to Scale (VRS).

The technical efficiency derived from the BCC model excludes the impact of the scale economy, so it is called pure technical efficiency (PTE). The BCC model also provides a method for calculating the SE. By comparing the TE and the PTE, the SE can be separated, i.e. SE=TE/PTE.

According to the measurement of technical efficiency, DEA model can also be divided into inputoriented, output-oriented and non-oriented. The input-oriented model is to measure the invalid rate of DMU from the input point of view. It focuses on the extent of the input should be reduced under the circumstance of not reducing the output, to achieve the technique effectiveness. On the contrary, the output-oriented model focuses on the extent of the output should be increased under the circumstance of not increase the input, to achieve the technique effectiveness from the output point of view. The non-oriented model is both concerned about input and output.

2.2 The introduction of MinDS model

Due to the measure of the invalid rate from the CCR and the BCC model contain only the proportional reduction (increase) ratio of all input (output), this type of the DEA model is called the radial DEA model. For the inefficient evaluated DMU, the gap between the current state and the ideal state, not only contain the proportional improvement part, but also includes the slacked improvement part. Since this improvement part is not reflected in the efficiency measurement of the radial model, Tone Kaoru(2001) proposed the non-radial Slack Based Measure model (SBM). But the model also has obvious shortcomings. From the point of view of distance function, the projection point of the evaluated DMU is the farthest point from the evaluated DMU on the production frontier. Thus the input or output inefficiency is maximize, rather than minimize the path to the production frontier. To overcome it, Aparicio(2007) and Tone K.(2010) et al made some improvements. They employed the nearest point on the strong efficient frontier as the projection point, and proposed the Minimum Distance to Strong Efficiency Frontier model (MinDS).

The MinDS-CCR model (1) consists of three parts. The first part is the objective functions and the constraint a. The second part is the constraint b. The third part is the constraint. The common purpose of the constraint b and the constraint c is to make the reference benchmark located in a same hyper plane, where M is a positive number large enough. The MinDS model use to represent the technical efficiency of the evaluated DMU. It measured the invalid rate from the point of view of input and output at the same time, respectively as and . Therefore, it is called the non-oriented model. If , the evaluated DMU is high effective that hasn't the weak effective problem of the radial model, so the input-output efficiency reaches the optimal level. On the basis of the MinDS-CRS model (1), the MinDS-VRS model can be got by adding the constraint and the free variable . It should be pointed out that TE/PTE is the Scale Efficiency Score (SE) when using radial distance model, and TE/PTE is the Scale Effect Score (SE) when using non-radial distance model.

3. SAMPLE, INDEX AND DATA DESCRIPTION

3.1 Sample selection

This paper selects 25 listed national defense science and technology enterprises from Chinese Listed Enterprises Association defense industry sector as the DMU. And we obtain the financial data of the 25 enterprises in 2011-2015 from CSMAR. They are: 4 from electronics industry, 4 from aerospace, 6 from heavy industry, 4 from information technology, 3 from remote navigation and 4 from new materials, see Figure 1.

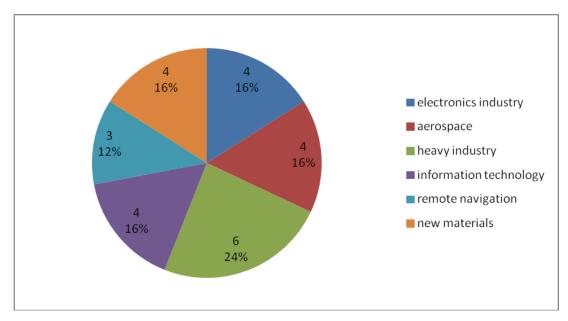


FIG.1 Type and quantity of listed national defense science and technology enterprises

2.2 Evaluation index selection

The input index of this paper is research investment, number of employees, operating costs, other inputs and cash paid for the purchase of fixed assets, intangible assets and other long-term assets. The output index of this paper is gross operating income and total profit. The research investment reflects the enterprises investment in scientific research projects, the number of employees reflects the enterprise investment in human resources, cash paid for the purchase of fixed assets, intangible assets and other long-term assets reflects the enterprise's capital investment, operating costs include the cost of selling goods or services as well as the purchase of raw materials, auxiliary materials fuel and other expenses, other inputs includes financial expenses, selling expenses and administrative expenses. The gross operating income reflects the growth of the enterprises, see Table 1.

	-				
	research investment (RI)				
	number of employees (NE)				
Input	cash paid for the purchase of fixed assets, intangible				
index	assets and other long-term assets (CPPFIO)				
	operating costs (OC)				
	other inputs (OI)				
Output	gross operating income (GOI)				
index	total profit (TP)				

Table 1 Input index and output index

3.3 Data description

As can be seen in the input index from Table 2, the average RI, NE, OC and OI of the sample enterprises were increased year by year. In particular, the average RI was the largest, with an average increase of 36.41%, while the average CPPFIO was decreased with an average decline of 10.47%.

In the output index, the average GOI of the sample enterprises was raising steadily, with an average increase of 2.25%. The average TP was significantly decreased with an average decline of 32.06%.

In detail, except for a slight change in individual indicators in individual years, the situation of electronics industry and remote navigation were relatively steady, with an increase of almost the input and output index year by year. In addition to CPPFIO in the annual reduction, the other indexes of information technology were increased. The operation of the aerospace showed a little volatility that NE, OC, CPPFIO and GOI have a decline in 2015, though the others kept increasing. The volatility of new material was the most obvious. Except for NE and OI, the others all had a different degree of decreased in 2015 after a period of growth, such as CPPFIO had a largest decline of 52.46% in the input index, TP had a largest decline of 203.59% in the output index. The situation of heavy industry was relatively unsatisfactory. Its GOI and TP respectively had an average decline of 4.78% and 66.96%, as well as the input index except for RI were all decreased or stagnant. More details are shown in Table 3.

						,	υ,
year	RI	NE	CPPFIO	OC	OI	GOI	TP
2011	43678544.0	5818.	725690413.	5086545153.9	760613425.78	6582009127.0	798853435.
	4	73	17	3	700013423.78	4	02
2012	75011046.3	6512.	601263826.	5156956140.5	871989635.45	6518645255.4	591500429.
2012	6	46	95	5	8/1989055.45	2	85
2013	88252239.0	6231.	540963988.	5675848017.8	948656621.11	7015851623.1	479583232.
2013	5	31	93	2	946030021.11	3	94
2014	107962677.	7499.	509335315.	5934596685.5	1017132293.5	7264270784.3	370060246.
2014	20	85	58	3	6	1	36
2015	144589376.	7511.8	464129787.	5984013576.6	1111276494.5	7176322907.5	146148967.
	14	5	89	5	5	7	24

Note: Calculated in constant 2011 RMB

Table 3 Industry financial data (average value)

Table 2 Overall financial data (average value)

		Tuble 5 Medality Maneual data (uterage valu							
Ind.	year	RI	NE	CPPFIO	OC	OI	GOI	TP	
	2011	204031	769.50	1565927	331402965	83729543.	498529208	87317022.	
N	2011	63.41		37.66	.77	24	.74	51	
Istr	2012	731177	1239.5	1413758	397315108	117116530	594760093	99171083.	
industry	2012	28.29	0	53.06	.93	.29	.78	59	
	2013	433535	1309.5	1245673	499289902	149056557	730776362	122175105	
nic	2015	47.61	0	74.15	.14	.35	.95	.23	
tro	2014	647886	1420.7	1367612	590604698	187831068	904317775	154946439	
Electronics	2014	06.15	5	04.44	.80	.80	.11	.31	
Щ	2015	975019	1825.7	1639367	780551165	251353193	121742553	215776098	
		90.04	5	39.29	.30	.48	7.65	.56	
	2011	134154	6601.7	1552313	289905299	320121054	340468151	193821633	
		76.97	5	54.02	4.84	.22	1.35	.79	
	2012	208992	6555.7	2425324	329323550	355009590	385057396	218347424	
ace		49.64	5	46.74	2.08	.52	2.73	.84	
sps	2013	2708987	6264.25	73783561	7673623829	949649249.	8934898715	417048824.	
Aerospace	2013	6.25		8.11	.03	26	.02	17	
	2014	4938568	13723.2	95726728	8004708202	1028824895	9347297175	465712389.	
	2014	3.22	5	0.28	.60	.76	.33	16	
	2015	8852386	13566.0	86032783	7256872544	1075953379	8702246204	513974893.	
	2015	5.74	0	3.36	.01	.26	.50	83	

	2011	1193972	1007.50	23434956	397017752.	73765514.7	595074602.	129534492.
	2011	1.95	1007.50	8.24	56	0	49	93
S	2012	1816057	1011.00	38999354	442738435.	80709562.4	590647217.	82211448.3
ial	2012	0.07	1011.00	7.95	12	6	62	6
ter	2013	1252639	1210.50	28422540	580536056.	134011178.	734665252.	23659484.4
na	2015	4.48	1210.50	9.05	52	92	99	6
Ň	2014	1524861	1258.75	21610727	603529530.	152138374.	826369395.	92286075.8
New materials	2014	8.29	1230.75	4.30	28	35	43	4
~		1188358		10273505	545235658.	190157101.	698465491.	-
	2015	2.31	1287.00	7.88	20	15	86	95597948.5
						-	00	7
	2011	9937385	1034.5	63374640	4564637325	785654045.	5487675729	299905552.
	2011	7.04	105 1.5	0.2	1501057525	1	3107073723	8
n y	2012	1690600	4591	50071752	5072859510	1023668793	6228514865	329609320.
tio. og.	2012	03.5	1071	2.5	5072057510	1025000775	0220311003	8
Information technology	2013	1893667	5371.75	40496426	4916322128	1187554393	6208388975	394224628.
ori	2010	40.3	00/11/0	4.6		110/00/00/00/0	0200000770	4
tec	2014	2247310	6151	31161718	5587319634	1399114249	7174674600	437162606.
	2011	30.7		3.9	220721902	10,,,11,,21,,	/1/10/1000	9
	2015	2777516	6151	38954104	6278108781	1667192426	8079356489	739028105.
		47.3	0101	0.6				2
	2011	1025313	1991.33	19766418	544269223.	193459206.	809443438.	76872469.2
on		51.53		9.23	80	27	34	7
ati	2012	1060762	1830.00	20434046	518156587.	244236726.	825578646.	115048967.
Remote navigation		49.95		3.78	18	52	17	19
nav	2013	1205441	2054.33	19489709	730364597.	326001009.	1175263096	165975300.
[e]		57.05		6.23	36	29	.57	50
no	2014	1103976	2103.33	27323270	895297751.	433719369.	1484616676	213976219.
ter		58.54		3.62	00	00	.87	05
Ч	2015	1425426	2745.33	37565764	1181926632	539801384.	1887370620	225111181.
		92.75		4.56	.27	06	.84	17
	2011	3938146	17777.1	22424561	1628796425	2348637206	2140888371	2929459312
		7.31	7	24.40	0.01	.22	9.08	.74
ry	2012	7701310	18175.1	16233956	1592861356	2594454325	2027393935	2008534772
ust		3.38	7	94.85	5.66	.26	6.48	.95
Heavy industry	2013	1236956	16293.0	11686110	1508858903	2311372832	1868090623	1347079281
y ii		71.62	0	17.38	7.23	.48	3.84	.25
av.	2014	1607525	16155.5	96187157	1537506846	2318443780	1849961882	716746699.
Hei		67.20	0	5.06	7.92	.30	6.34	21
L L		2129516	15583.3	78917470	1537286409	2385422106	1757938487	-
	2015	11.55	3	2.92	6.16	.55	9.19	406286003.
		11.00	Ľ		0.10		,,	79

Note: Calculated in constant 2011 RMB

4. EMPIRICAL ANALYSIS

This paper regards the annual observations of each sample enterprise as a DMU. By using MinDS-CRS and MinDS-VRS model, TE and PTE can be calculated, and then SE can be calculated by TE/PTE. In the calculation results, TE represents the overall production efficiency of the sample enterprises, PTE represents the production technology and management level of the enterprises, and SE reflects the influence of scale economy ^[2]. Figure 2 shows the trend of the annual average of TE, PTE and SE of the sample enterprises in 2011-2015. Table 4 shows the industry average of TE, PTE and SE of the sample enterprises. Table 5 shows the returns to scale stage of the enterprises in the industry. For limited space, this paper does not list all the annual results of the sample companies.

4.1 The overview

On the whole, the average TE of the sample enterprises is 0.867, with a median of \$0.901 from 2011 to 2015. From the result that the median is greater than the average, it can be concluded that the overall production efficiency of most sample enterprises is above the average level, which reflects that the overall production efficiency of the 25 sample enterprises is ideal.

As we can see from Figure 2, in the meantime, the maximum of TE of the sample enterprises is 0.9049 in 2015, followed by 0.9045 in 2012 and the minimum is 0.756 in 2013. The overall trend of TE is roughly "M" font, same as the trend of SE, while the trend of PTE is a weak "Z" font. Specific speaking, from 2011 to 2012, PTE and SE of the sample enterprises are both in growth, and PTE is lower than SE. In 2013, the PTE and SE both drop to the minimum in five years, but the PTE's decline is smaller so that PTE exceeds SE. In 2014, the PTE and SE rise again. The SE achieves the maximum in five years over the PTE again. In 2015, the SE has a decline, but the PTE keeps increasing to maximum in five years over the SE.

The phenomenon shows that the overall production efficiency of the sample enterprises is greatly influenced by the SE. In general, each industry has not been able to completely get rid of the previous development mode that investment driven. However, by observing the trend line (Figure 2) we can find that the overall production efficiency of the sample enterprises is more influence by PTE since 2013. The trend of technical progress and management improvement gradually appears. The reasons for this phenomenon may be the Communist Party of China announced a series of important policies in the third Plenary Session of the 18th CPC Central Committee in 2013. A comprehensive reform of the economy and society, including the reform of the market economy, the reform of state-owned enterprises, etc. has begun. Especially the promulgation of "The Guiding Opinions on Promoting the Shareholding System Reform of Military Enterprises (hereinafter referred to as the Guiding Opinions)" has a fundamental influence on the organization structure and production management of the listed military enterprises. It promotes the listed military enterprises to actively adjust the development direction, optimize the industrial structure, and actively adapt to the needs of the army and the new national economic development.

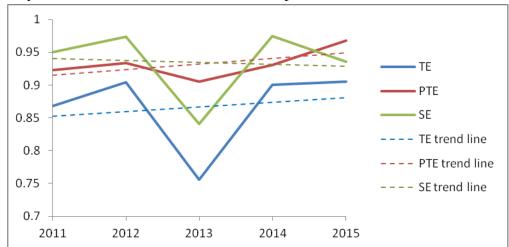


FIG. 2 Overall TE, PTE and SE (average value)

4.2 The industry situation

From the type of industry, the average TE, PTE and SE of the sample enterprises have different degrees of difference in different types.

The average industry TE ranking first is heavy industry. Although its TE only ranks first in 2013 (also the minimum), the rest of the years rank in the top which are never less than 0.85 with a relatively stable trend. Besides, its average SE also ranks first with an industry average of more than 1. On the contrary, its average PTE only ranks fourth in the lower-middle level. This shows that the overall production efficiency of heavy industry is obviously affected by the scale of economic factors, and heavy industry is a typical investment driven industry. It is worth noting that after a period of stagnant growth, its average PTE rises by 11.4% in 2015 and exceeded the average SE. This reflects the industry's emphasis on technological progress and management improvement. The industry has emerged in the transformation of the development trend.

The average industry TE ranking second is aerospace. The situation of production efficiency of aerospace is similar to heavy industry. Its average SE ranks second in the upper level but average PTE ranks fifth in the downstream level. However after a period of decline, its PTE has begun to increase since 2014, and exceeds the average SE in 2015. This shows that although the industry is a typical investment driven industries and the overall production efficiency is obviously influenced by the scale of economic factors, it has the trend of innovation driven development.

The average industry TE ranking third is electronics industry. The trend of its average TE has a strong volatility that presents "V" with a minimum of 0.721 in 2013 and a maximum of 1 in 2015. Its average PTE ranks second in the upper level but average SE ranks fourth in the lower-middle level. It can be seen that the overall production efficiency of electronic industry is greatly influenced by the production technology and management level. In 2015, the average TE, PTE and SE are all 1, indicating that the overall production efficiency of the industry has reached the optimal level, and all kinds of influencing factors have played a positive role.

The average industry TE ranking fourth is information technology. Its average PTE ranks first that has equal to 1 four years. In the opposite, its average SE only ranks fifth in the downstream level. This reflects that information technology is a typical industry of technological progress, the production technology and management level has a significant impact on the overall production efficiency.

The average industry TE ranking fifth is new materials. The general performance of new material is not so good. Its average PTE ranks third in the middle level, and its average SE ranks sixth that is the lowest in all industries. This reflects that the industry needs to continue to improve the production technology and management level, but also need to enlarge the overall investment, and develop the scale economy effect.

The average industry TE ranking sixth is remote navigation. The overall performance of remote navigation is not ideal. Its average PTE ranks sixth that is the lowest rank, and its average SE ranks third in the middle level. This shows that the industry needs to continue to increase investment and enlarge industrial scale on the one hand. On the other hand, it is urgent to improve the level of management so as to walk into innovation driven development way.

Ind.	year	TE	PTE	SE	Ind.	year	TE	PTE	SE
y	2011	0.911338 75	1	0.911338 75	gy	2011	0.8354422 5	1	0.835442 25
ndustr	2012	0.871005 5	0.928369 5	0.947199 5	chnole	2012	1	1	1
nics i	2013	0.721367 5	0.953601 75	0.758415	ion tee	2013	0.728127	0.9447882 5	0.787725
Electronics industry	2014	0.947257 25	0.948184 75	0.99883	Information technology	2014	0.855133	1	0.855133
Н	2015	1	1	1		2015	0.8835485	1	0.883548 5
Ind	ustry	0.890194	0.966031	0.923156	Ind	ustry	0.860450	0.988958	0.872370
ave	rage	(3)	(2)	(4)	ave	erage	(4)	(1)	(5)
	2011	0.955871 75	0.920569	1.051742 5	ſ	2011	0.6531503 33	0.678866	1.000924
ee	2012	0.858200 5	0.871168 75	0.973676 75	Remote navigation	2012	0.8163883 33	0.8533113 33	0.964453 67
Aerospace	2013	0.819374 25	0.834751 75	0.987987 5		2013	0.7988546 67	0.9253143 33	0.862901
Αe	2014	0.952571 5	0.94109	1.015021 25		2014	0.8721246 67	0.862661	1.012214 67
	2015	0.920666 25	0.986277 5	0.934125 25	ł	2015	0.8622113 33	0.8704346 67	0.989720 67
Ind	ustry	0.901337	0.910771	0.992511	Ind	ustry	0.800546	0.838117	0.966043
ave	erage	(2)	(5)	(2)	ave	erage	(6)	(6)	(3)
	2011	0.869082 5	0.952699 75	0.906827		2011	0.8869383 33	0.912473	0.980957 5
rials	2012	0.872524	1	0.872524	ustry	2012	0.9436685	0.92028	1.039766 33
New materials	2013	0.610647 5	0.868708	0.699764 5	Heavy industry	2013	0.8692903 33	0.891716	0.967992
New	2014	0.896649 75	1	0.896649 75	Неал	2014	0.928039	0.8907545	1.059346 67
	2015	0.818336 5	0.991962	0.826033 5		2015	0.974675	0.9922506 67	0.982094 67
Ind	ustry	0.813448	0.962674	0.840360	Ind	ustry	0.920522	0.92149	1.006
average		(5)	(3)	(6)	ave	erage	(1)	(4)	(1)

Table 4 Industry TE, PTE and SE (average value)

Note: Because the data in the table is the average, rather than the value of a single enterprise (DMU), so it is only approximate to meet the TE=PTE*SE. The number of brackets for the industry's overall ranking. Ranking are shown in parentheses.

Data resources: Based on the empirical results of MinDS-CRS model and MinDS-VRS model.

4.3 The returns to scale stage

As we can see from Table 5, the enterprises of electronics industry are almost in the stage of constant returns to scale. Although the enterprise 300101 and 002190 have been in the stage of increasing returns to scale over a period of time, they all entered the constant returns to scale in 2015. The enterprise of aerospace are in the stage of constant or increasing returns to scale, where enterprise 000901 and 600316 are in the stage of increasing returns to scale at a long time. The situation of new materials is similar to remote navigation. They are basically in the stage of increasing returns to scale. The enterprises of information technology are almost in the stage of constant returns to scale. Only enterprise 002253 is in the stage of increasing returns to scale at a long time.

The enterprises of heavy industry are also basically in the stage of constant returns to scale, where enterprise 600590 has been in the stage of increasing returns to scale after the situation of decreasing returns to scale since 2011. However enterprise 300185's situation is relatively complex and has certain volatility, even emerges the situation of decreasing returns to scale in 2015.

Industry	Enterprises (Stock code)	2011	2012	2013	2014	2015
	300101	Increasing	Increasing	Increasing	Constant	Constant
Electronics	002339	Constant	Constant	Constant	Constant	Constant
industry	002190	Increasing	Increasing	Increasing	Increasing	Constant
	002049	Constant	Constant	Constant	Constant	Constant
	000901	Constant	Increasing	Increasing	Increasing	Increasing
Aarospaca	600316	Increasing	Increasing	Increasing	Constant	Increasing
Aerospace	600118	Constant	Constant	Constant	Constant	Constant
	600893	Constant	Constant	Constant	Constant	Constant
	002167	Increasing	Increasing	Increasing	Constant	Constant
New	002297	Increasing	Increasing	Increasing	Increasing	Increasing
materials	601208	Constant	Constant	Increasing	Constant	Increasing
	002428	Constant	Constant	Constant	Constant	Increasing
Remote	600435	Increasing	Decreasing	Increasing	Increasing	Increasing
navigation	002151	Increasing	Increasing	Increasing	Increasing	Increasing
navigation	002230	Constant	Constant	Constant	Constant	Constant
	002446	Increasing	Constant	Increasing	Increasing	Constant
Information	002439	Constant	Constant	Constant	Constant	Constant
technology	002253	Increasing	Constant	Increasing	Increasing	Increasing
	600100	Constant	Constant	Decreasing	Constant	Constant
	002037	Constant	Constant	Constant	Constant	Constant
	600031	Constant	Constant	Constant	Constant	Constant
Heavy	600590	Decreasing	Increasing	Increasing	Increasing	Increasing
industry	300185	Increasing	Decreasing	Increasing	Increasing	Decreasing
	600416	Constant	Constant	Constant	Constant	Constant
	601989	Constant	Constant	Constant	Constant	Constant

Table 5 The returns to scale stage of the enterprises in the industry

4. CONCLUSION

Based on the evaluation of the performance of 25 listed military enterprises, the following conclusions can be drawn.

1. The overall production efficiency of sample enterprises is ideal. Their TE is in a high level and keeps growing momentum as a whole. However, the overall economic benefits of the sample enterprises are declining year by year, and even a large area of loss of business situation happened in individual industries in 2015. This shows that good production efficiency does not bring good economic benefits.

2. The situation of production and management has certain differences in diverse industries. (1) Electronic industry and aerospace are basically in the stage of constant returns to scale. Their TE is in an upper level, and their PTE and SE is balance for comparison. In addition, their GOI and TP are both increasing year by year that is description of the industry is in a golden age of growth and development. (2) Information technology and remote navigation both has the characteristics of better economic efficiency and relatively high production efficiency.

But their overall performance level is not good. They are basically in the stage of constant or increasing returns to scale with a low level of TE. The difference is that the former belongs to the typical technological progress industry with the higher PTE, but the latter basically belongs to the investment driven industry with the higher SE. These two industries' GOI and TP are also in a sustained growth trend, especially the growth rate of TP was high, which reflected a huge potential for development contained in the enterprises in the industries. (3) The production efficiency of heavy industry is good, but the economic efficiency is not ideal, so its overall performance level is low. Heavy industry is in the stage of constant returns to scale, which belongs to the typical investment driven industry, and its TE and the SE of the industry are very high. Besides, the GOI and TP of heavy industry are decreasing year by year. This shows that the industry has encountered some resistance to the development and enterprises in the industry need to upgrade. (4) The production efficiency and economic benefit of the new material are not satisfactory, which leads to the low level of overall performance. The situation of new material is complex. On the one hand, its TE, PTE and SE are not high. On the other hand, its GOI and TP present the obvious volatility. Although it is almost in the stage of increasing returns to scale, the development prospects of the industry is difficult to accurately grasp. Countries and governments need to be supported and guided.

Based on the above conclusions, this paper puts forward some suggestions for the development of sample enterprises.

1. Control the scale and take the technological progress route. The results of this paper show that the size of the input of the sample enterprises is growing, but the GOI and TP are getting lower and lower, the SE trend line (Figure 2) is also in decline. As a result, the sample enterprises have already appeared the situation of diseconomies of scale in general, and have some negative effects on the whole production and operation efficiency. Therefore, it is an important measure to control the scale of investment, to improve the utilization of resources, to improve the management of enterprises and to implement the strategy of innovation driven development.

2. Timely adjust the direction of development. On the basis of the subjective and objective conditions, such as industrial base, industrial structure and policy environment, each industry need to make targeted changes. For the industry of good production efficiency and economic performance, such as electronic industry and aerospace, the recommendation is to maintain their current momentum of development, both taking into account "quality" and "quantity". For the industry of good economic performance but medium production efficiency, such as information technology and remote navigation, the suggestion is that the former appropriately promotes investment, and the latter need to improve innovation capacity on the basis of continuing to expand the scale of production. For the industry like heavy industry of good production efficiency and bad economic performance, the recommendation is to appropriate control scale, improve resource utilization, and accelerate the transformation and upgrading of the industry so as to break the bottleneck of the development of the industry. For the industry like new material of bad production efficiency and economic performance, it needs the support and guidance of the country and the government.

At the same time, the enterprises in the industry should improve the production technology, improve the level of management and broaden the market through their own efforts.

3. Facing the market and promoting the reform of military enterprise shareholding system. Guiding Opinions has indicated that promoting the joint-stock reform of military enterprises is a profound change in the field of national defense science and technology industry. It is conducive to break the industry, military and civilian and military enterprise ownership boundaries, broaden the financing channels, as well as establish a standardized corporate governance structure for military enterprises, transform the management mechanism and strengthen the internal vitality and the ability of independent development of military enterprises. It is an effective measure to solve the deep-seated contradictions and problems in the reform and development of military enterprises. However, due to the development of military enterprises greatly affected by the policy, such as in 2013(the Guiding Opinions issued), the overall productivity of the sample companies has declined significantly (Figure 2), the majority of military enterprises groups have chosen to take a cautious attitude to the military assets of joint-stock reform. Therefore, the enterprises must emancipate the mind and fully understand the importance and urgency of deepening reform of military enterprises. Only in this way can the military enterprises have a rational view of the "throes" of the reform process, face and adapt to the capital market through shareholding system reform and become a real market subject.

REFERENCES

- [1] Chen Gang: Data Envelopment Analysis and MaxDEA Software [M]. Beijing: Intellectual Property Press, 2014.
- [2] Bai Xuejie, Jiang Kai and Pang Ruizhi: The Operational Efficiency and Upgrading Path Selection of China's Major National Development Zones: from the Perspective of Foreign Investment and Land Use
 [J]. Beijing: Chinese Industrial Economy, 2008, 26-35.
- [3] Wu Qing: Efficiency Analysis of Listed Military Enterprises Based on Super Efficiency DEA Model [J]. Changsha: Journal of Social Science of Hunan Normal University, 2007, 102-105.
- [4] Zhang Yong, Li Haipeng and Yao Yaping: Research on the Optimal Allocation of Military and Civilian Integration Industrial Resources in Western China Based on DEA [J]. Beijing: Scientific and Technological Progress and Countermeasures, 2014, 89-93.
- [5] Wang Haitao, Gu Chunwei: Research on Production Efficiency and Its Influencing Factors of China's Military Listed Companies Under the Background of Military and Civilian Integration [J]. Jinan: Industrial Economic Review, 2016,59-71.