CONSIDERATIONS FOR OPTIMIZING THE FLIGHT PERFORMANCE OF miniUAVs

Vasile PRISACARIU

"Henri Coandă" Air Force Academy, Brașov, Romania (prisacariu.vasile@afahc.ro)

DOI: 10.19062/2247-3173.2023.24.24

Abstract: Unmanned aerial vehicles benefit from a series of mature technologies that transform them into data acquisition, processing and dissemination tools with high levels of impact on areas of interest and great utility for users.

The paper exposes the stages of analysis regarding the upgrade process of UAV (ATM-1) from the variant of equipping a target aircraft to a superior variant that can be used for data collection, from areas of interest, in the form of static or dynamic images. The proposed variant has implications both on the air vector balance and on the performance of use due to the new onboard equipment.

Keywords: ATM-1, aerodynamic performances, autopilot, XFLR5 freeware

Symbols and acronyms

~			
AGL	Above Ground level	LLT	Lifting line theory
AoA	Angle of Attack	LOS	Line of Sight
BEC	Battery Eliminator Circuit	MAC	Main Aerodynamic Chord
BLOS	Beyond Line of Sight	PDB	Power Distribution Board
C_l, C_d, C_m	Aerodynamic coefficient	Rx / Tx	Receiver / Transmitter
<i>C</i> 2	Command and control	VLM	Vortex Lattice Method
ESC	Electronic Speed Control	XFLR5	Xfloil low Reynolds
FPV	First Person View		

1. INTRODUCTION

The paper focuses on the aerodynamic aspects of the upgrade process applied to an aircraft by exposing the stages of analysis applied to an UAV (ATM-1) from the variant of equipping a target aircraft to a superior variant that can be used for sampling data from areas of interest, in the form of static or dynamic images. The proposed aerodynamic variant has implications both on the balance of the air vector and on the performance of use due to the new onboard equipment.

Misso	A find	Class Daves	Chart Daway							
Micro	Mim	Close Range	Short Range			NATOUA	S CLASSIFICATIO	N		
		1.3	THE .	Class	Category	Normal Employment	Normal Operating Altitude	Normal Mission Radius	Primary Supported Commander	Example Platform
Aerovironment, USA	Skylark, Israel	Silverfox, USA	Sojka, Czech Rep.		Strike/ Combat *	Strategic/National	Up to 65,000 ft	Unlimited (BLOS)	Theatre	Reaper
Medium Range	Medium Range Endurance	Low Altitude Deep Penetration	Low Altitude Long Endurance	Class Ⅲ (> 600 kg)	HALE	Strategic/National	Up to 65,000 ft	Unlimited (BLOS)	Theatre	Global Hawk
			MALE	Operational/Theatre	Up to 45,000 ft MSL	Unlimited (BLOS)	JTF	Heron		
Shadow 200, USA	Wachkeeper, Israel	CL 289, France-Germany	Eagle Scan, USA	Class I (150 kg-600 kg)	Tactical	Tactical Formation	Up to 18,000 ft AGL	200 km (LOS)	Brigade	Hermes 450
Medium Altitude Long Endurance	High Altitude Long Endurance	Unmanned Combat Aircraft	Optionally piloted, converter UAS		Small (>15 kg)	Tactical Unit	Up to 5,000 ft AGL	50 km (LOS)	Battalion, Regiment	Scan Eagle
	- cial			Class I	Mini (<15 kg)	Tactical Sub-unit (manual or hand launch)	Up to 3,000 ft AGL	Up to 25 km (LOS)	Company, Platoon, Squad	Skylark
Predator A, USA	Global Hawk, USA	Barrakuda Germany	Unit ID UN	(< 150 Kg)	Micro ** (<66 J)	Tactical Sub-unit (manual or hand launch)	Up to 200 ft AGL	Up to 5 km (LOS)	Platoon, Squad	Black Widow
			INIT ID, UK				1.			

FIG. 1 UAV clasification, a. civilian clasification, b. NATO clasification [1]

A series of specialized paper [1, 11, 12] offer classifications according to relevant criteria such as: total mass, flight duration/distance or from the point of view of use, the most relevant classifications are shown in Fig. 1.

The study stages include aspects of: description of the miniUAV variants (ATM-1 and ATM-1AP /autopilot); the XFLR5 freeware tool; comparative 2D (airfoil) and 3D aerodynamic analyzes of proposed aerodynamic concepts.

2. RESOURCES

2.1. Target drone performances.

The ATM-1 target aircraft (see Fig. 2) is based on a simple monoplane aerodynamic concept with a mid-wing, classic wing and fixed wing landing gear. Its construction is modular for both easy containerized transport and minimal time for operation in the areas of interest (pre-assembled fuselage and engine with tail-planes and landing gear, two half-planes).

FIG. 2 Target ATM -1 [2]

The main characteristics and flight performance, in the basic version, are highlighted in Table 1.

		Tab	ole 1 ATM-1 features [2, 8]
Features	Value	Features	Value
Span / Lenght	2650 mm / 1750 mm	Flight autonomy	0,6 h
Chord	300 mm	Flight distance	2800 m
Wing area	$0,78 \text{ m}^2$	Ceiling	2800 m
Total weight	8 kg	Engine	$26 \text{ cm}^3 / 1,7 \text{ CP}$

2.2. ATM 1N target drone. Upgrade proposal.

For an upgrade process with a relevant performance increase, we propose a series of equipment (propulsion and radio electronics) that generate the values of new constructive characteristics highlighted in Table 2, [3, 4, 5, 8, and 9].

	1	αστο 2 Εφαιρποπι απα γοατά	es proposar jor min mi
Features	Value	Features	Value
Span / Lenght	2650 mm / 1750 mm	Autopilot	Pixhawk PX4
Wing area	$0,78 \text{ m}^2$	Meteo sensor	uRad monitor A3
Total weight / payload	7 kg / 4kg	C2 system	FR Sky Taranis
Combustion engine	26 cm ³ / 2,95 CP	FPV camera	Fixed / mobile

Table 2 Equipment and features proposal for ATM-1AP
Image: Comparison of the second secon

Upgrade equipment has minimal aerodynamic implications due to forward resistance but involves centering optimizations depending on the flight range (fuel reserve). Figure 2 provides a global view of the connections and system elements on board the ATM-1AP/autopilot UAV.

FIG.2 ATM-1AP connection diagram, [7]

2.3. Method and tools analysis

To support the upgrade process, we used the XFLR5 freeware tool that offers geometric parameterization and aerodynamic analysis modules, the latest version containing numerical calculation modules, the most relevant being: 2D design and analysis mode (aerodynamic profiles) and 3D design and analysis mode (wing, aircraft). It should be noted that these numerical analyzes are specific to the speeds and no. Low Reynolds based on LLT (lifting line theory), VLM (vortex lattice method) and 3D panel calculation methods. [6, 8].

3. PERFORMANCES ANALYSIS

3.1. Purpose, objectives and conditions of analysis

The purpose of the numerical multicriteria analysis focuses on determining the implications of the upgrade process on the overall performance of the UAV. The pursued objectives want the quantification of the analyzed parameters according to the selected analysis conditions. The analysis matrix provides a series of relevant cases for this type of miniUAV, according to Table 3.

		2	Table 3 The analysis matrix
UAV type	2D Analysis	3D Analysis	Mass and balancing
ATM-1	yes	yes	no
ATM-1AP	yes	yes	yes

3.2. 2D and 3D aerodynamic analyzes

a. 2D analyzes

The 2D aerodynamic analyzes are focused on the numerical simulations of the profiles used in the compared construction variants, see fig. 3, under the conditions selected from table 4.

FIG. 3 The airfoils [10]

The relevant aerodynamic parameters in Fig. 4-7 (and Appendix 1) were determined by considering the viscosity effect and according to the analysis conditions in Table 4.

		Table 4 T	The 2D analysis conditions
Condition	Value	Condition	Value
Speed	20 m/s	Iteration	100
Nr. Reynolds	400000	AoA	-15° to 15°

Figure 4 shows the variation of the lift coefficient (C_1) as a function of the angle of attack (AoA) for the analyzed profiles, due to the curvature the Clark Y profile has the highest C_1 value for a fixed AoA (ex. 10^o) but also a forward resistance (C_d) at the same AoA (ex.10^o), see figure 5.

According to figure 6 we observe similar values of C_m for the symmetric profiles NACA 0009 and NACA 0012 and high values of C_m for Clark Y, values read in the range AoA= $-10^{\circ} \div 10^{\circ}$. Figure 7 shows the variation of C_l/C_d ratio vs AoA (gliding ratio) or gliding rate with high values for the Clark Y profile.

FIG. 6 C_m vs AoA

- m

20

1...

b. 3D analyzes

The values of the global geometry are similar to the ATM-1 variant, (see figure 8), the geometric configuration that was used for the initial numerical simulations, with the FPV camera nacelle mounted on the ventral side on the vertical axis passing through the leading edge of the wing. The 3D analysis conditions are recorded in Table 5.

		Table 5	ne 2D analysis conditions
Conditions	Value	Conditions	Value
Polar type	Fixed speed	Iterations	100
Speed	20 m/s	AoA	-15° to 15°
Type analysis	VLM	Nr. Reynolds	400000
Boundary conditions	Dirichlet		

FIG. 8 ATM-1AP upgrade

In the graphs in Fig. 9-12, a series of variations of the numerical values of the aerodynamic coefficients can be observed depending on the angle of attack (AoA). In Fig.9, as expected, implications on the increase in forward resistance (C_d -AoA) and according to Fig. 10 implications on the pitching moment (C_m -AoA) are revealed.

The presence of the FPV nacelle indicates a minimal influence for the roll coefficient (Fig. 11) and the yaw moment variation is maximum around the value $AoA=10^{\circ}$ (Fig. 12).

c.Balancing

The mass estimate for the onboard equipment is highlighted in Table 6.

		Table 6 The mass estimate (kg						
Nr. crt.	Elements	ATM-1	ATM-1AP					
1	Wing	2,2	2,2					
2	Fuselage	2,3	2,3					
3	Horizontal tail	0,3	0,3					
4	Vertical tail	0,2	0,2					
5	Engine	1,7	1					
6	FPV camera	0	0,05					
7	Autopilot + receiver	0,3	0,1					
8	Fuel	1	1					
9	Battery	0	0,25					
	Total	8,0	7,40					

The arrangement of the masses on the air vector can be seen in figure 11, and the numerical data in annex 3. When arranging the masses of the equipment, both the availability of the volumes of the front fuselage (for the tank) and of the rear fuselage for the autopilot were taken into account.

FIG. 11 ATM-1AP balancing

CONCLUSIONS

The implications of the ATM-1 UAV upgrade process require multiple iterations on aerodynamic and centerline optimization. The paper presented an aerodynamic optimization and centering cycle, which can form a foundation for completing the upgrade approach. Accurate digital reproduction of the geometry and layout of the inertial values can converge to results similar to those of the experimental stages. Mounting the FPV camera nacelle on the ventral side has minimal implications on aerodynamic performance, however an optimization of stability through the layout of the equipment is considered.

The optimal arrangement of the equipment determines the maximization of the UAV flight performances, correlated with the balancing limits determined by the fuel consumption or the release of some mass elements necessary for the missions in the areas of interest.

REFERENCES

- [1] Unmanned Aircraft Systems, available at https://www.globalsecurity.org/military/world/uav.htm accessed at 05.04.2023;
- [2] Cartea tehnică a avionului Aero T.M.-1, 1981, Tg Mureș, 27p;
- [3] *Pxhawk PX4* autopilot, available at https://ardupilot.org/plane/docs/common-pixhawk-overview.html #common-pixhawk-overview , consulted at 12.05.2023;
- [4] uRAD monitor A3, available at https://www.uradmonitor.com/products, consulted at 12.05.2023;
- [5] *FR Sky Taranis*, available at https://www.frsky-rc.com/product/taranis-x9d-plus-2 consulted at 14.05.2023;
- [6] *Guidelines for XFLR5 v6.03. Analysis of foils and wings operating at low Reynolds numbers*, 71 p. 2013, available at https://sourceforge.net/projects/xflr5;
- [7] Ardupilot, available at https://ardupilot.org/copter/docs/common-powering-the-pixhawk.html , consulted at 14.05.2023;
- [8] V. Prisacariu, M. Boşcoianu, I. Cîrciu, *Management of robotic aerial systems accomplishment*, RECENT Journal 2/2012, Transilvania University of Brasov, Romania, ISSN 1582-0246, p. 203-217;
- [9] *Gasoline engine*, available at <u>https://www.zyhobby.com/products/rcgf-26cc-petrol-gasoline-engine</u>, consulted at 14.05.2023;
- [10] Clark Y airfoil, http://airfoiltools.com/airfoil/details?airfoil=clarkysm-il, accessed at 11.05.2023;
- [11] Shakhatreh, Hazim, Sawalmeh, Ahmad, Al-Fuqaha, Ala, Dou, Zuochao & Almaitta, Eyad, Khalil, Issa, Othman, Noor, Khreishah, Abdallah, Guizani, Mohsen. (2019). Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access. 7., https://doi.org/10.1590/jatm.v13.1233;
- [12] J.P. Yaacoub, H. Noura, O. Salman, A. Chehab, Security analysis of drones systems: Attacks, limitations, and recommendations, Internet of Things, Volume 11, 2020, 100218, ISSN 2542-6605, https://doi.org/10.1016/j.iot.2020.100218.

Annex 1. 2D analysis. Aerodynamic coefficients.

alcalat	ted polar	FOP: NACA	0009								
1 Nor	solids munit	our fixed	14	ach numbe	r fixed						
. 111	1.000 (1	top)	1.000 (b)	(eoff							
ach +	0,018	Re +	0,400 # 0	l NCT	it = 9	.000					
alpha	64	40	cop	6.8	Top Atr	Bet Mir	Cpain .	things	m(p)		
15,000	-0.7507	0.18268	8.37998	0.0455	1.0000	0.0285	-1.9981	0.0000	0.0000	0.0000	0.3000
\$4,608	-0.7102	0.16775	4.34585	4,4396	1.0005	0.0221	-1.9814	0,0000	0.0000	4.0000	0.2953
13,000	-9,7033	0.14856	0.14590	0.0297	1,0000	0.6263	-2.2000	0.0000	0.0000	0.0000	0.2024
12.000	-0.7034	0.12676	0.12434	0.0196	1.0000	0.0268	2.5829	0.0000	0.0000	0.0000	0.2690
11.000	-8,8965	8-85722	1.01622	-0.0713	1.0008	9.0549	-5,6595	8.0000	9.0008	8.0008	8.2365
\$8,808	-8.9674	8.83738	10.01388	8.0188	1.0008	4,4552	-8.2756	0.0000	0.0000	0.0000	8.2238
-9.608	-0.9176	0.02023	0.02280	-0.0125	1,0000	4.4581	-5,8251	0.0000	0.0000	0.0000	0.2288
-8,000	-0.8646	0.02023	0.01383	-0.0078	1.0000	0.0204	-5,1001	0,0000	0.0000	0.0000	0.2340
-7.000	-9.7527	0.01706	0.01071	0.0047	1.0000	9.8263	-8.1685	0.0000	0.0000	0.0000	0.2379
4.000	-0.6621	0.01305	0.00683	-0.0005	1.0000	0.0258	3.3409	0.0000	0.0000	0.0000	0.2437
5.000	.0.5722	8.01148	9.90447	0.0029	1.0008	0.0632	-2.6711	8.0000	0.0000	9.0009	8.2589
4,000	-8.4803	8.00548	8.00113	0.0063	3.0008	#.1955	-1.9785	8,0005	0.0000	8.0008	8.2595
1.000	-0.3861	0.00785	8.00245	8.0088	1.0008	0.4265	-1.3437	0.0000	0.0000	0.0000	8.2697
-2,000	-0.2874	0.00091	0.00234	0.0109	1,0000	0.6487	-0.9062	0,0000	0.0000	0.0000	0.2055
1.000	.0.1560	0.00624	0.60238	0.0072	0,5000	4.6415	4,9137	0,0000	0.0000	0.0000	0.2713
0.000	2,0000	0.00009	0.00252	0,0000	0.9373	0.5373	-8,7528	8.000	9,0000	8.0000	8,5595
1.000	0.1366	0.00634	0.002337	0.0012	0.8415	0.1000	-8.5137	0.0008	0.0000	0.0000	0.2713
2.008	8.2874	0.00038	0.00234	-6.0109	0.6488	3.0008	-8.5088	0.0000	8.0008	0.0000	0.2855
3,000	0,3868	0.00725	8.00245	-0,0005	0,4367	1.0000	-1.3835	0.0000	0.0004	0.0000	0.2697
4.000	0,4802	0.00948	0.00313	-0.0063	0.1956	1.0000	-1.9783	0,0000	0.0000	0.0000	0.2595
5.000	0.5721	0.01148	4.00447	0.6629	0.0632	1.0000	-2,6709	0.0000	0.0000	0.0000	0.2565
1.000	0.6631	0.01181	9.00622	0.0009	0.0358	1.0000	-3,3808	0.0000	0.0000	9,0008	8.2437
7,000	8.7527	8.03706	8.05215	0.0047	0.0363	1.8008	-4.1685	8.8008	0.0000	4.0008	8.2579
8.000	0.8446	0.02023	0.01383	8.0878	0.0364	1.0008	-5.1403	0.0000	0.0008	0.0000	8,2340
5,000	0.9177	0.02923	0.02285	0.0124	0.0181	1.0000	-5.8257	0.0000	0.0000	0.0000	0.2286
14.400	0.9676	0.03732	4,43309	0,0179	0.6152	1.0000	-6.2763	0.0000	0.5668	0.0000	0.2229
11.000	9.0264	8,85732	8.05452	0.0210	0.0143	1.0000	5,6500	0.0000	0.0000	9.0009	0.2160
×	10.000		in courts	-0.0000	0.0003	1.0000	4.0414	an updated	-	10. Online	40 hitter 1

calculat	ted polar	for: CLAD	Y ADUGEL								
1.1.89	telds num	er fixed	10	ch runbe	r fixed						
xtrf - Nach -	1.000 (1	ap) Re -	1.000 (b) 0.000 e d	tton) Nor	it - 9	.000					
alpha	e.	co	cop	C#	Top Mr	Bot Mr	cpein	chinge	w.p		
11.000	10.000				1 0000	0.0300	12 2000	A 4444	0.0000		- Allerta
11.000		a. 11 mm		0.0141	1.0000	0.0100	1.0040	0.0000	0.0000	0.0000	0.1000
	a bear				1.0000	0.0114	2.2222	0.0000		0.0000	0.1000
.9,000	-0.2007	an entrance	0.00156	-0.00.00	1.0000	0,04,00	-1.2121	10.00000	0.0000	0.0000	
1,000	0.3304	0.010754	0.02405	0.0014	0.0364	0.0415	3.0475	0.0000	0.0000	0.0000	0.040
5.000		0.01033	0.01277		an. terment	17.0415	2.000	10.00000	10.100000	10.0000	10.0879
-1.000	-0.0310	0.01314	0.00350	-0.0834	0.0707	0.0184	1.0400	0.0000	0.0000	0.0000	.5.4563
1.000	8.8729	0.01020	0.001111	-0.0078	0.0415	0.055.0	1.5624	10.0000	0.0000	12.00000	1.4717
.3 055	0.1707	- 49975	* ****	-0.0041	0.0051	A 1884	1 1751	0.0000	0.0000	0.0000	A 7111
1 000		0.00070				0.1100			10.00000	10.00000	
0.005	0.2225	0.002222	0.00245	-0.0001	a 7102	4 6453		0.0000	0.0000	0.0000	0.3500
						1					
3,000	0.0412	0.00703	0.00234	-0.0000	0.6303	1.0000	0.000	0.0000	0.0000	0.0000	0.3833
3,000	at high	0.000100	10.000200		0.0000	1.00000	1.0000	0.00000	10.00000	0.0000	0.0000
4 000	0.0333	0.00000	0.00177	-0.0503	8 4967	1.0000	-1 1867	0.0000	0.0000	0.0000	0.3414
5.000			a manage	-0.0764	-	3.00003		0.0000	0.0000	0.0000	0.1164
5.000	1.0158	0.01140	0.00504	-0.0712	0.3463	1.0000	1.2919	0.0000	0.0000	0.0000	0.1141
7.000	1.111.	10.000 http://	0.000114		a. 1444	1.0000	1.0000	4.0000	di dalama	0.0000	0.5545
8.000	1.2023	0.01385	0.00715	-0.0573	0.1615	1.0600	.7.7182	0.0000	0.0000	0.0000	0.3363
9.000	1.2201	0.01502	in months	-0.00.00	0.1675	1.0000	1.256.2	in included	10.0000	0.0000	0.3075
10.000	1.1346	0.01888	0.01167	-0.0545	0.1000	1.0000	4.1658	0.0000	0.0000	0.0000	0.2784
11.000	1.100.0	0.02223	0.01496	-0.0425	0.0168	1.0000	-4.000.7	0.0000	0.0000	0.0000	0.3505
12.000	1.6687	0.02042	0.02104	-0.0102	0.0197	1.0000	.5.4919	0.0000	0.0000	0.0000	0.2588
11.000	1.4215	0.01555	0.02007	-0.0121	0.0171	1.0000	-6-1000	Or. DONNES	17.0000	0.0000	10.2541
14.000	1.4101	8.04627	0.03254	-0.0261	0.0154	1.0000	-4-5793	0.0000	0.0000	0.0000	0.2493
15,000	1.10022	0.01122	0.01116	0.0200	B.0141	1.0000	4.8620	0.0000	17.180830	0.0000	8.3577

		10.5679.964										
LINE COLUMN	geed :	38.800 K/S										
	-		1000	2.5	1.227	11223	122	100			1.00	22
			-	a stated	-		-			-	the second	
135.000					8,878,785			1.000000			20,2000	
10.000			a attack	0.0001/1	a second			8.000/10		0.000000	20.0000	
-11.000			8.497226	8.000000				a		0.000000	20,0000	
100.000				0.000003							20.0000	
1.1.1.1000				0.000000	a. executor		0.000000				200.00000	
	0.000		0.030238	E. CALERINE	8.858578		E. 2000000	8.1002.70			20.0000	
	1222		a contrate	0.000011	* *****	-				a		
1.000		10.101042	0.007210	0.000071	0.017543		0.000000	0.110070	0.00000	0.000000	20.0000	A 1911
	12.222		in contraction					a latera				
- 2. 0000			0.001240	4.415654			6. 0000000	0.100101		E. 0000000	THE OWNER	
			0.000.000	B. 451 14 15			-	a sector		-		
		- B. BUILTER	a deserve	B. 87.9867			0.000000	10. and 100		0.0000000	10.0000	1.1000
		A. 100 10 14	-				-	a avealue		The second second	10.0000	
		at a location of		# #1#DOD						a contract		
		a linear	a annehit	-	d an India	-	A. (2000000)	at the second			20,0000	
				0.000000				at all the set				
1.000	1.000	a 1411144	in America	A MARINE		- Annual Contractor		an appendix			The second	
			0.000000									
	1.000	a heaters	in delivery	a photo la	* #11114	a abbrent					70,0000	
				0.0001108							20.0000	
	1.000		0.000000	a dobdoo	a statistic		- 0.0000000	a other had	A Annual A		20.0000	
1.000		B. 1999112		0.0100.00						-	10.0000	
	0.000	A. 24122.14	0.000011	0.000000	0.000000		- C. 0000000			-	10.0000	
		e		6-663103								
10.000		A Distant	0.000000	0.010000	a attack			a blocks			10.0000	
	0.000	a hereit			8.872858			A MARKING				
10.000		a hardford	4.451774	0.010010	a animum			1.100000			20,0000	
		A binnin	a sintin		a lime in			Ch. Chrone				
10.000		A DOMAGO	a hintly	0.000100	4.111000			1.1100000			20,0000	
10.000		1.000000	a classic	0.000100				- Contractor			20,0000	
11.111	*	1	and other a	8.91A248	e. querte			- BY LAAMING		1.00000	11.000	8.210

Annex 3. Balance export data.

x y z is Ixx ar	s location re item's i	of item's own nertias about	CG. : item's own	cG.						
x,y,z sys (same	stem here m orientatio	ust be exactl n, same origi	ly the same o in location,	ne used ir same lengt	the .avl in h units)	nput file				
mass	х	У	z	Ixx	Iyy	Izz	Ixy	Ixz	Iyz	
0	126	1.75e-14	31.1	0	0	0	0	0	0	Main Wing
0	42.2	-4.04e-15	-60	Θ	Θ	е	0	Ø	0	! Second Wing2
0	1.23e+03	7.7e-14	30	0	0	0	0	0	0	Elevator
0	1.23e+03	-1.69e-13	105	0	0	0	0	0	0	! Fin
0	0	0	0	0	0	0	0	0	0	Body's inertia
1	-350	0	0	0.000	0.000	0.000	Engine			
1	-150	0	0	0.000	0.000	0.000	Tank			
0.25	-50	0	0	0.000	0.000	0.000 !	Battery			
1.1	100	600	0	0.000	0.000	0.000	Wing right			
1.1	100	-600	0	0.000	0.000	0.000 !	Wing left			
0.05	10	0	-60	0.000	0.000	0.000	FPV			
0.3	1.18e+03	0	30	0.000	0.000	0.000 !	Elevator			
0.2	1.14e+03	0	0	0.000	0.000	0.000	Fin			
2.3	300	0	0	0.000	0.000	0.000 !	Body			
0.1	500	0	0	0.000	0.000	0.000	Autopilot			