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Abstract: In this paper we will use the decomposition of rational functions in simple fractions. 

The rational functions are build using the delay polynomials  L  and  L  of an ARIMA time 

series. 

For decomposition of the time series Xt we use the rational fraction 
 

 

L

L




, and for the 

decomposition of the white noise  at we use the rational fraction 
 

 

L

L




. 

Finally, because for the decomposition of Xt we do not take into account that the roots of 

 L  are greater than one in absolute value, we eventually multiply in the first above case  L  

by  1
d

L  for taking into account the possible trend and by  1
sd

sL  for taking into account the 

possible seasonal components. 
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1. INTRODUCTION 

 

The classical decomposition of time series is [3,4] in seasonal components, trend and 

a stationary component. The remaining stationary component, even we obtain it by 

removing seasonal components and trend, even we obtain it by seasonal and non-seasonal 

differentiation, is modeled as  AR p ,  MA q  or  ,ARMA p q  time series. 

For an  ,ARMA p q  we can write 
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Using the above formula, we obtain [2,3,4] 
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2. THE DECOMPOSITION OF TIME SERIES 

 

For decomposition of Xt we use the decomposition in simple fractions of 
 

 

L

L




. Denote 

now the roots of  L  1x , ..., lx  with the multiplicities 1m , ..., lm . 

If Xt is  ,ARMA p q  with p q , there exists the white noise at such that 
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If we have p q , the above formula becomes 

 

 
 1 1

,  where
1

iml
ij

t t tj
i j

i

A
X L a a

x L


 

 
 

  (2') 

 

  L  is the quote of 
 

 

L

L




. 

In formulae (2) and (2') the roots of  L  can be complex. In this case we can group 

the conjugate complex roots. We obtain at denominator   2
1 2Re

im

iz z  , and the 

numerator becomes a real polynomial of degree mi. In the case 1im   (simple complex 

roots), we obtain a linear numerator, and a second degree function at denominator. It 

results that if p q , the  ,ARMA p q  is a sum of  AR j  with 1 ij m   for real xi, and 

a time series similar to  2 ,i iARMA m m  for complex conjugate roots with the 

multiplicity mi.All the above parts of Xt have the same white noise at, except multiplying 

by a constant. If  p q   we add to the above decomposition the term  p

p ta



 , and if  

p q   we add the term    tL a  , i.e. a polynomial of degree q p  in lag L applied to 

the same white noise at. 

If we consider the reverse in (1"), we decompose analogously at in terms of Xt. For 

forecasting we can forecast each term in the decomposition of Xt.In the above 

decomposition of Xt the fact that the roots of  L  are in absolute value grater than one 

is used only for stationarity, not for decomposition. For instance, if the time series is 

 , ,ARIMA p d q  we use instead of  L     1
d

L L . If we group the unit root and the 

roots of  L , we obtain a decomposition in  0, ,0ARIMA j  with 1,j d  and an 

 ,ARMA p q  time series. If we perform also the seasonal differentiation  1
sd

sL , we 

group also the complex roots of equation 1sL  . 

In the case of stationarizing  using the removing trend by moving average method, we 

have to find the roots of  
2

0

2 1 0
q

j q

j

L q L




    , corresponding to the differences 

ˆ
t q t qm X  , i.e the reminding stationary time series after removing the moving average of 

order 2 1q  , with opposite sign. Using two times the scheme of Horner, we obtain  

1L    of multiplicity 2. The other roots are the roots of polynomial 
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By multiplying  
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2 1 0
q

j q

j

L q L




     by L-1, we can prove that the only multiple 

root is one (multiplicity is two), and we have no other root on the unit circle. Between the 

other 2 2q   roots we can prove that we have at most two real roots. From the theory of 

symmetric polynomials, it results that mainly the other 2 2q   roots are clustered in 

groups of four: jL , 
jL , 1

jL
 and 1

jL
. The two real roots appear if four does not divide 

2 2q  , hence for even values of q. For odd values of q, these solutions are all simple 

and conjugated complex in the above groups of four. If we use a moving average with  

1q   , the roots are  1 2 1L L   . If  2q   , the other two roots are the roots of second 

degree equation 2 3 1 0L L   , having the roots 2

1  and 2

2 , where 1 5

2j  , from 

Fibonacci stream. The roots of polynomial involving moving average of order 2 1q   

with even and odd q are presented in Tables 6 and 7, Appendix A. 

The following structure of solutions has not been proved, but it was checked for 

20,...,6,4q , 100q , 500q  and 1000q , and for  19,..,5,3q , 99q , 499q  

and 999q . For even values of q the real negative roots make a circular crown with the 

radius the absolute values (the other roots have the absolute values between the two 

radius). The minimum absolute value (that of the real root 1 ) increases from 0.38197 

for q=2 to 0.806351 for q=20, 0.94207 for q=100, 0.98493 for q=500 and 0.99174 for 

q=1000. For the minimum argument of complex roots expressed in degrees, the value 

qminarg

360
 decreases from 1.08145 for q=4 to 1.0223052 for q=20, 1.0048508 for q=100, 

1.0009924 for q=500, and 1.0004979 for q=1000. For odd values of q we have not real 

roots (all roots are complex in above groups of four). But the minimum absolute value is 

also increasing on q: from 0.47568 for q=3 to 0.79966 for q=19, 0.94161 for q=99, 

0.9849 for q=499, and 0.99174 for q=999. The expression 
qminarg

180
 decreases from 

1.102567 for q=3 to 1.023379 for q=19, 1.0048986 for q=99, 1.0009944 for q=499, and 

1.0004984 for q=999. 

In the case of exponential smooth we multiply  L  by 
L

L





1

1
, where   is the ratio 

of decreasing the weights of exponential smooth. If   is the inverse of a root of  L , 

we divide   by L1 , otherwise we multiply   by L1 . Of course, in both cases we 

multiply   by L1 . 

The effective decomposition of Xt is made starting from the moment t just before the 

first computed at. For instance, in an AR(p) model first t is p. We decompose this first Xt 

in (1)

tX ,…, ( )p

tX , and ( )j

tb  are the drifted white noises from the initially one multiplied by 

the constants from fractions decomposition. It results a linear regression with the 

coefficients (1)

tX ,…, ( )p

tX . The white noise starts in decomposition of Xt by multiplied by 

the constants, and bt is decomposed in MA(1) like white noises (
 j
tX  is revertible, but 

not necessary stationary). 
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3. APPLICATION 

 

Consider the CPI (Consumer Prices Index) from Buletinul Institutului National de 

Statistică [6] expressed in percentage of current month related to previous, in the period 

January 1991 - February 2017. 

We want to express the time series Xt as in ARIMA model, and next to decompose the 

time series Xt and the white noise at. First we notice that, using the Dickey - Fuller unit 

root test [2] that the time series is not stationary, but the difference 1 ttt XXX  is. In 

the case of AR (p) and MA(q)with , 0,5p q  , not both zero, the representations of Xt are 

presented in Table 1, that follows. 
Table 1 – Representations of Xt for AR (p) and MA(q) time series 

p|q AR(p) MA(q) 

1 -0.38675 Xt-1+at at-0.38675 at-1 

2 -0.48401 Xt-1 -0.25149 Xt-2+at at-0.48401 at-1-0.0643 at-2 

3 -0.52059 Xt-1-0.32189 Xt-2-0.14546 Xt-3+at at-0.52059 at-1-0.06992 at-2+0.0125 at-3 

4 -0.53818 Xt-1 -0.36081 Xt-2 -0.20841 Xt-3            

-0.12091 Xt-4+at 

at-0.53818 at-1-0.08064 at-2+0.00386 at-3-0.02384 

at-4 

5 -0.55532 Xt-1 -0.39035 Xt-2 -0.25955 Xt-3  

-0.19719 Xt-4 -0.14174 Xt-5+at 

at-0.55532 at-1-0.09149 at-2-0.01155 at-3-0.04642 

at-4    -0.04043 at-5 

 

In the AR(p) case we obtain the following results for 5,1p . 

 
Table 2 – Decomposition of Xt for ARIMA(p,1,0) time series 

p Simple fractions for AR(p) Simple fractions for Xt 

1  
LL 38675.01

27819.0

1

72111.0





 

2 
   Li

i

Li

i

43923.024201.01

27549.05.0

43923.024201.01

27549.05.0









 

   Li

i

Li

i

L

43923.024201.01

48207.021899.0

43923.024201.01

48207.021899.0

1

5762.0













 

3 

   Li

i

Li

i
L

54979.002.01

26718.02755.0

54979.002.01

26718.02755.0
48059.01

44899.0












 

   Li

i

Li

i

L

43923.024201.01

48207.021899.0

43923.024201.01

48207.021899.0

1

5762.0













 

4 

   

   

0.15478 0.19809 0.15478 0.19809

1 0.18476 0.57486 1 0.18476 0.57486

0.34525 0.07649 0.34525 0.07649

1 0.45385 0.3544 1 0.45385 0.3544

i i

i L i L

i i

i L i L

 


   

 
 

   

 

   

   

0.44877

1

0.1424 0.0536 0.1424 0.0536

1 0.18476 0.57486 1 0.18476 0.57486

0.13321 0.02782 0.13321 0.02782

1 0.45385 0.3544 1 0.45385 0.3544

L

i i

i L i L

i i

i L i L
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   Li

i

Li

i

Li

i

Li

i

L

59495.032538.01

11077.025203.0

59495.032538.01

11077.025203.0

58036.037203.01

13626.010794.0

58036.037203.01

13626.010794.0

64862.01

28006.0























 
   

   Li

i

Li

i

Li

i

Li

i

LL

59495.032538.01

02947.012731.0

59495.032538.01

02947.012731.0

58036.037203.01

06692.012175.0

58036.037203.01

06692.012175.0

64862.01

10759.0

1

3943.0


























 

In the above table, for instance in the AR(3) model Xt is decomposed in three AR(1) time series 

with the polynomial  1 1 0.48059L L   ,  2 1 (0.02 0.54979 )L i L     and 

 3 1 (0.02 0.54979 )L i L    , and the white noises the white noise at of Xt multiplied by 

0.44899, 0.2755+0.26178 i, respectively 0.44899, 0.2755-0.26178 i.  
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If we consider the non-zero expectation case, the above white noise at is substituted by 

the drifted noise  1t tb a m   , where   2 31 0.52059 0.32189 0.14546L L L L     , 

according Table 1,  hence φ(1)=1.98794. Because m=-0.04757 it results that the drift is -

0.09457, hence we subtract from at the value 0.09457. Using this bt we obtain the same 

three components for initial time series, but bt is multiplied by other coefficients: 0.14574, 

0.17561-0.0486 i, and 0.17561+0.0486 i. In addition, corresponding to the root L=1 in the 

ARIMA case, we have an ARIMA(0,1,0) component Yt such that the difference is bt 

multiplied by 0.50303. The decompositions of initial time series Xt and of the drifted 

noise bt  for ARIMA(0,1,q) are presented in the following table. 
 

Table 3 – Decomposition of Xt at for ARIMA(0,1,q) time series 

q Simple fractions for Xt Simple fractions for at 

1 
L


1

61325.0
38675.0  

1.58565
2.58565

1 0.38675 L



 

2 
L

L



1

45169.0
0643.054831.0  

0.5812 1.5812

1 0.59253 1 0.10852L L
 

 
 

3 
2 0.42199

0.57801 0.05742 0.0125
1

L L
L

  


 

0.6125 0.9556 0.657

1 0.60223 1 0.19056 1 0.10892L L L
  

  
 

4 

2

3

0.6388 0.10062 0.01998

0.3612
0.02384

1

L L

L
L

 

 


 

   

0.2872 0.5433

1 0.7105 1 0.33985

0.3719 0.2236 0.3719 0.2236

1 0.08377 0.30284 1 0.08377 0.30284

L L

i i

i L i L

 
 

 
 

   

 

5 

2

3 4

0.74521 0.18989 0.0984

0.25479
0.08685 0.04043

1

L L

L L
L

 

  


    

   

0.1038

1 0.84007

0.2381 0.196 0.2381 0.196

1 0.21154 0.47124 1 0.21154 0.47124

0.3138 0.1094 0.3138 0.1094

1 0.35392 0.23478 1 0.35392 0.23478

L

i i

i L i L

i i

i L i L




 
 

   

 
 

   

 

 

For instance, the decomposition of ARIMA(0,1,3) is Xt=0.57801 bt+0.05742 bt-

1+0.0125 bt-2+Yt, where Yt is an ARIMA(0,1,0) time series with difference equal to 

0.42199*bt.  

In the following we consider the model ARIMA(p,1,q), where the size of the ARMA 

model, the value of p+q, is constant. The values of  L  for 4,3,2,1p   are 

2 3 41 0.05275 0.07812 0.04559 0.11309L L L L    , 2 31 0.0486 0.48217 0.16583L L L   , 
21 0.55701 0.10944L L  , respectively 1 0.92335L . The corresponding values of  L  

are 1 0.53855L , 21 0.54042 0.41813L L  , 2 31 0.07329 0.38463 0.10279L L L   , and 
2 3 41 0.61752 0.59303 0.21334 0.14483L L L L    . 

Consider now 5p q   with 1 4p  . The results for decomposition of the 

ARMA(p,q) time series Yt and of the initial ARIMA(p,1,q) time series Xt are presented in 

the following table. 
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Table 4 – Decomposition of Xt  and Yt for ARIMA(p,1,q) time series with p+q=5 

p Simple fractions for Yt Simple fractions for Xt 

4 

   

   

0.38451 0.19825 0.38451 0.19825

1 0.42136 0.35245 1 0.42136 0.35245

0.1155 0.15024 0.1155 0.15024

1 0.44774 0.41748 1 0.44774 0.41748

i i

i L i L

i i

i L i L

 
 

   

 


   

 

   

   

0.44896

1

0.16224 0.00366 0.16224 0.00366

1 0.42136 0.35245 1 0.42136 0.35245

0.11328 0.12348 0.11328 0.12348

1 0.44774 0.41748 1 0.44774 0.41748

L

i i

i L i L

i i

i L i L




 
 

   

 


   

 

3 

   

0.54943 0.0823 0.54943 0.0823

1 0.61666 0.29215 1 0.61666 0.29215

0.09886

1 0.84791

i i

i L i L

L

 
 

   



 

 

 

0.13662 0.15613 0.0767

1 1 0.61666 0.29215

0.15613 0.0767 0.55113

1 0.61666 0.29215 1 0.84791

i

L i L

i

i L L


 

  




  

 

2 

7.64178 0.34688
8.2949 0.93924

1 0.15394 1 0.71095
L

L L
   

 

 

0.40473 1.39037 0.14414
0.93924

1 1 0.15394 1 0.71095L L L
  

  
 

1 
2 3

0.2926
1.2926 0.576

1 0.92335

0.06118 0.15685

L
L

L L

   




 
2

0.34644 0.14047
0.79403

1 1 0.92335

0.21803 0.15685

L L

L L

  
 



 

 

The corresponding decompositions of the white noise in the ARMA and ARIMA 

cases are presented in Table 6, that follows. 

 
Table 5 – Decomposition of at for ARIMA(p,1,q) time series with p+q=5 

p Simple fractions for ARMA(p,q) Simple fractions for Xt 

4 
2 3

1.47457
0.42182 0.39645

1 0.53855

0.25558 0.11309

L
L

L L

  




 
2 3 4

1.94412
1.58556 0.28694

1 0.53855

0.14087 0.14249 0.11309

L
L

L L L

   


 

 

3 

0.18107 0.17836

1 0.43061 1 0.97103

0.64057 0.3966

L L

L

 
 



 
2

0.60158 0.00532
0.40374

1 0.43061 1 0.97103

0.24397 0.3966

L L

L L

  
 



 

2 
 

 

0.117357 2.82097

1 0.38772 0.02902

0.117357 2.82097 0.65287

1 0.38772 0.02902 1 0.69415

i

i L

i

i L L




 




  

 
 

 

1.17618 10.09684
1.0647

1 0.38772 0.02902

1.17618 10.09684 0.28767

1 0.38772 0.02902 1 0.69415

i

i L

i

i L L


  

 




  

 

1 

 

 

0.20482 0.09338

1 0.15477 0.38077

0.20482 0.09338

1 0.15477 0.38077

0.6087 0.01835

1 0.78463 1 0.89667

i

i L

i

i L

L L




 




 


 

 

 

 

0.60294 0.28271

1 0.15477 0.38077

0.60294 0.28271

1 0.15477 0.38077

0.16708 0.03881

1 0.78463 1 0.89667

i

i L

i

i L

L L




 




 


 

 

 

CONCLUSIONS 

 

In [2,3,4] the decomposition of a time series in seasonal component, trend and 

stationary has been performed using for instance moving average. Analogously, if we use 

the differentiation and/ or seasonal differentiation we can group the root one and the 

complex unit root for seasonal differentiation. Other decompositions are performed due to 

economic reasons, as the decomposition of GDP in [1,5]. An open problem is if the 

economic decomposition can be naturally performed by grouping this paper 

decomposition of time series. 
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We have said “similar to ARMA(2*m,m)” instead of ARMA(2*m,m) in Section 2, 

because the roots of numerator are not necessary in absolute value greater than one. For 

instance, in the case of AR(5), if we add the corresponding AR(1) components 

 Li

i

54979.002.01

26718.02755.0




 and the conjugate, we obtain 

     LiLi

L

54979.002.0154979.002.01

23847.021588.0




, which has obviously roots for 

denominator greater than one in absolute value, but the numerator has the root 

L=0.90523! For MA(q) with 5,2q  the quote of degree q-1 has in all four cases in Table 

3 roots greater than one in absolute value. An open problem is if this is a rule, or it 

happens in our example and other ones. 
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APPENDIX A. ROOTS FOR MOVING AVERAGE 
 

Table 6 – Roots for even values of q 

 

q Real root 1  The other absolute values 1  The other angles in degrees 

2 -0.38197   

4 -0.52031 0.55242 83.22129 

6 -0.60296 0.65776; 0.61432 66.52096; 56.51432 

8 -0.65882 0.72426; 0.68255; 0.66423 85.88092; 50,73123; 42.88701 

10 -0.69947 0.76948; 0.73145; 0.71223; 0.70249 
76.67192; 69.20316; 41.01439; 

34.58262 

12 -0.73058 
0.8021; 0.76772; 0.74918; 0.73821; 

0.73244 

87.02103; 63.84469; 57.98187; 

34.42691; 28.98308 

14 -0.75264 
0.82669; 0.79555; 0.77812; 0.76717; 

0.76031; 0.75649 

80.1066; 74.88039; 55.00913; 

49.90537; 29.66504; 29.94881 

16 -0.77539 
0.84588; 0.8175; 0.80126; 0.79065; 

0.78351; 0.77887; 0.77624 

87.66116; 70.36931; 65.72646; 

48.32439; 43.80988; 26.06156; 

21.90285 

18 -0.79215 
0.86126; 0.83525; 0.82012; 0.81001; 

0.80291; 0.79796; 0.79466; 0.79277 

82.33238; 78.11198; 62.74497; 

58.57341; 43.08966; 39.04454; 

23.23933; 19.52106 

20 -0.80635 

0.87389; 0.84988; 0.83578; 0.82619; 

0.81929; 0.81426; 0.81066; 0.80822; 

0.80621 

88.07264; 74.2845; 70.44565; 

56.61257; 52.82802; 38.87899; 

35.21603; 20.96897; 17.60727 
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Table 7 – Roots for odd values of q 

q The absolute values 1  The angles in degrees 

3 0.47568 54.41846 

5 0.61161; 0.57041 78.82098; 33.58896 

7 0.69447; 0.65137; 0.63517 73.19168; 57.55775; 24.36856 

9 0.70893; 0.68982; 0.68159; 0.74885 84.13503; 54.44701; 45.35669; 19.14011 

11 0.78702; 0.75086; 0.73188; 0.72136; 0.71657 
78.89304; 69.4227; 47.30958; 37.43245; 

15.76617 

13 0.8152; 0.7825; 0.7645; 0.7535; 0.74701; 0.74396 
86.06313;67.06126; 59.0979; 40.22503; 

31.86881; 13.40661 

15 0.83685; 0.80714; 0.7903; 0.7795; 0.77244; 0.76812 
81.68513; 74.92242; 58.32909; 

51.45025; 34.99151; 27.74666; 11.66294 

17 
0.85397; 0.82683; 0.81115; 0.80078; 0.79364; 

0.7888; 0.78577; 0.78431 

87.0486; 72.27458; 66.33853; 51.6154; 

45.55699; 30.96595; 24.56959; 10.32147 

19 
0.86786; 0.8439; 0.8283; 0.81844; 0.81442; 0.80643; 
0.80294; 0.80073; 0.79966 

83.3456; 78.10145; 64.81504; 59.52108; 

46.29108; 40.87608; 27.7727; 22.04581; 
9.25726 

 


