DECOMPOSITION OF THE TIME SERIES AND OF SHOCKS USING THE SIMPLE FRACTIONS DECOMPOSITION AND APPLICATIONS

Daniel CIUIU
Technical University of Civil Engineering Bucharest (dciuiu @ yahoo.com)

DOI: 10.19062/1842-9238.2017.15.2.4
Abstract: In this paper we will use the decomposition of rational functions in simple fractions. The rational functions are build using the delay polynomials $\varphi(L)$ and $\theta(L)$ of an ARIMA time series.

For decomposition of the time series X_{t} we use the rational fraction $\frac{\theta(L)}{\varphi(L)}$, and for the decomposition of the white noise a_{t} we use the rational fraction $\frac{\varphi(L)}{\theta(L)}$.

Finally, because for the decomposition of X_{t} we do not take into account that the roots of $\varphi(L)$ are greater than one in absolute value, we eventually multiply in the first above case $\varphi(L)$ by $(1-L)^{d}$ for taking into account the possible trend and by $\left(1-L^{s}\right)^{d_{s}}$ for taking into account the possible seasonal components.

Keywords: ARMA and ARIMA time series, delay operator, delay polynomials.

1. INTRODUCTION

The classical decomposition of time series is [3,4] in seasonal components, trend and a stationary component. The remaining stationary component, even we obtain it by removing seasonal components and trend, even we obtain it by seasonal and non-seasonal differentiation, is modeled as $\operatorname{AR}(p), M A(q)$ or $\operatorname{ARMA}(p, q)$ time series.

For an $\operatorname{ARMA}(p, q)$ we can write

$$
\begin{align*}
& \varphi(L) X_{t}=\theta(L) a_{t}, \text { where } \tag{1}\\
& \left\{\begin{array}{l}
\varphi(L)=1-\sum_{i=1}^{p} \varphi_{i} L^{i} \\
\theta(L)=1-\sum_{i=1}^{q} \theta_{i} L^{i}
\end{array}\right. \tag{1'}
\end{align*}
$$

Using the above formula, we obtain [2,3,4]
$\left\{\begin{array}{l}X_{t}=\frac{\theta(L)}{\varphi(L)} a_{t} \\ a_{t}=\frac{\varphi(L)}{\theta(L)} X_{t}\end{array}\right.$.

2. THE DECOMPOSITION OF TIME SERIES

For decomposition of X_{t} we use the decomposition in simple fractions of $\frac{\theta(L)}{\varphi(L)}$. Denote now the roots of $\varphi(L) x_{1}, \ldots, x_{l}$ with the multiplicities m_{1}, \ldots, m_{l}.

If X_{t} is $\operatorname{ARMA}(p, q)$ with $p>q$, there exists the white noise a_{t} such that

$$
\begin{equation*}
X_{t}=\sum_{i=1}^{l} \sum_{j=1}^{m_{i}} \frac{A_{i j}}{\left(1-x_{i} \cdot L\right)^{j}} a_{t} . \tag{2}
\end{equation*}
$$

If we have $p \leq q$, the above formula becomes

$$
\begin{equation*}
X_{t}=\tilde{\theta}(L) a_{t}+\sum_{i=1}^{l} \sum_{j=1}^{m_{i}} \frac{A_{i j}}{\left(1-x_{i} \cdot L\right)^{j}} a_{t} \text {, where } \tag{2'}
\end{equation*}
$$

$\tilde{\theta}(L)$ is the quote of $\frac{\theta(L)}{\varphi(L)}$.
In formulae (2) and (2') the roots of $\varphi(L)$ can be complex. In this case we can group the conjugate complex roots. We obtain at denominator $\left(1-2 \operatorname{Re}\left(z_{i}\right)+|z|^{2}\right)^{m_{i}}$, and the numerator becomes a real polynomial of degree m_{i}. In the case $m_{i}=1$ (simple complex roots), we obtain a linear numerator, and a second degree function at denominator. It results that if $p>q$, the $\operatorname{ARMA}(p, q)$ is a sum of $\operatorname{AR}(j)$ with $1 \leq j \leq m_{i}$ for real x_{i}, and a time series similar to $\operatorname{ARMA}\left(2 \cdot m_{i}, m_{i}\right)$ for complex conjugate roots with the multiplicity m_{i}. All the above parts of X_{t} have the same white noise a_{t}, except multiplying by a constant. If $p=q$ we add to the above decomposition the term $\frac{\theta_{p}}{\varphi_{p}} a_{t}$, and if $p<q$ we add the term $\tilde{\theta}(L) a_{t}$, i.e. a polynomial of degree $q-p$ in lag L applied to the same white noise a_{t}.

If we consider the reverse in (1"), we decompose analogously a_{t} in terms of X_{t}. For forecasting we can forecast each term in the decomposition of X_{t}.In the above decomposition of X_{t} the fact that the roots of $\varphi(L)$ are in absolute value grater than one is used only for stationarity, not for decomposition. For instance, if the time series is $\operatorname{ARIMA}(p, d, q)$ we use instead of $\varphi(L)(1-L)^{d} \varphi(L)$. If we group the unit root and the roots of $\varphi(L)$, we obtain a decomposition in $\operatorname{ARIMA}(0, j, 0)$ with $j=\overline{1, d}$ and an $\operatorname{ARMA}(p, q)$ time series. If we perform also the seasonal differentiation $\left(1-L^{s}\right)^{d_{s}}$, we group also the complex roots of equation $L^{s}=1$.

In the case of stationarizing using the removing trend by moving average method, we have to find the roots of $\sum_{j=0}^{2 \cdot q} L^{j}-(2 \cdot q+1) L^{q}=0$, corresponding to the differences $\hat{m}_{t-q}-X_{t-q}$, i.e the reminding stationary time series after removing the moving average of order $2 \cdot q+1$, with opposite sign. Using two times the scheme of Horner, we obtain $L=1$ of multiplicity 2 . The other roots are the roots of polynomial

$$
\begin{equation*}
\sum_{j=0}^{q-1} \frac{(j+1)(j+2)}{2}\left(L^{j}+L^{2 \cdot q-j}\right)+\frac{q(q+1)}{2} L^{q} . \tag{3}
\end{equation*}
$$

By multiplying $\sum_{j=0}^{2 \cdot q} L^{j}-(2 \cdot q+1) L^{q}=0$ by $L-1$, we can prove that the only multiple root is one (multiplicity is two), and we have no other root on the unit circle. Between the other $2 \cdot q-2$ roots we can prove that we have at most two real roots. From the theory of symmetric polynomials, it results that mainly the other $2 \cdot q-2$ roots are clustered in groups of four: $L_{j}, \overline{L_{j}}, \frac{1}{L_{j}}$ and $\frac{1}{\bar{L}_{j}}$. The two real roots appear if four does not divide $2 \cdot q-2$, hence for even values of q. For odd values of q, these solutions are all simple and conjugated complex in the above groups of four. If we use a moving average with $q=1$, the roots are $L_{1}=L_{2}=1$. If $q=2$, the other two roots are the roots of second degree equation $L^{2}+3 L+1=0$, having the roots $-\alpha_{1}^{2}$ and $-\alpha_{2}^{2}$, where $\alpha_{j}=\frac{1 \pm \sqrt{5}}{2}$, from Fibonacci stream. The roots of polynomial involving moving average of order $2 \cdot q+1$ with even and odd q are presented in Tables 6 and 7, Appendix A.

The following structure of solutions has not been proved, but it was checked for $q=4,6, \ldots, 20, q=100, q=500$ and $q=1000$, and for $q=3,5, . .19, q=99, q=499$ and $q=999$. For even values of q the real negative roots make a circular crown with the radius the absolute values (the other roots have the absolute values between the two radius). The minimum absolute value (that of the real root ≥-1) increases from 0.38197 for $\mathrm{q}=2$ to 0.806351 for $\mathrm{q}=20,0.94207$ for $\mathrm{q}=100,0.98493$ for $\mathrm{q}=500$ and 0.99174 for $\mathrm{q}=1000$. For the minimum argument of complex roots expressed in degrees, the value $\frac{360}{\arg \min \cdot q}$ decreases from 1.08145 for $\mathrm{q}=4$ to 1.0223052 for $\mathrm{q}=20,1.0048508$ for $\mathrm{q}=100$, 1.0009924 for $\mathrm{q}=500$, and 1.0004979 for $\mathrm{q}=1000$. For odd values of q we have not real roots (all roots are complex in above groups of four). But the minimum absolute value is also increasing on q : from 0.47568 for $\mathrm{q}=3$ to 0.79966 for $\mathrm{q}=19,0.94161$ for $\mathrm{q}=99$, 0.9849 for $\mathrm{q}=499$, and 0.99174 for $\mathrm{q}=999$. The expression $\frac{180}{\arg \min \cdot q}$ decreases from 1.102567 for $\mathrm{q}=3$ to 1.023379 for $\mathrm{q}=19,1.0048986$ for $\mathrm{q}=99,1.0009944$ for $\mathrm{q}=499$, and 1.0004984 for $\mathrm{q}=999$.

In the case of exponential smooth we multiply $\varphi(L)$ by $\frac{1-L}{1-\alpha L}$, where α is the ratio of decreasing the weights of exponential smooth. If α is the inverse of a root of $\varphi(L)$, we divide φ by $1-\alpha L$, otherwise we multiply θ by $1-\alpha L$. Of course, in both cases we multiply φ by $1-L$.

The effective decomposition of X_{t} is made starting from the moment t just before the first computed a_{t}. For instance, in an $\operatorname{AR}(\mathrm{p})$ model first t is p. We decompose this first X_{t} in $X_{t}^{(1)}, \ldots, X_{t}^{(p)}$, and $b_{t}^{(j)}$ are the drifted white noises from the initially one multiplied by the constants from fractions decomposition. It results a linear regression with the coefficients $X_{t}^{(1)}, \ldots, X_{t}^{(p)}$. The white noise starts in decomposition of X_{t} by multiplied by the constants, and b_{t} is decomposed in MA(1) like white noises ($X_{t}^{(j)}$ is revertible, but not necessary stationary).

Decomposition of the Time Series and of Shocks Using the Simple Fractions Decomposition and Applications

3. APPLICATION

Consider the CPI (Consumer Prices Index) from Buletinul Institutului National de Statistică [6] expressed in percentage of current month related to previous, in the period January 1991 - February 2017.

We want to express the time series X_{t} as in ARIMA model, and next to decompose the time series X_{t} and the white noise a_{t}. First we notice that, using the Dickey - Fuller unit root test [2] that the time series is not stationary, but the difference $\Delta X_{t}=X_{t}-X_{t-1}$ is. In the case of AR (p) and MA(q)with $p, q=0,5$, not both zero, the representations of X_{t} are presented in Table 1, that follows.

Table 1 - Representations of X_{t} for $\mathrm{AR}(\mathrm{p})$ and $\mathrm{MA}(\mathrm{q})$ time series

pqq	$\mathrm{AR}(\mathrm{p})$	$\mathrm{MA}(\mathrm{q})$
1	$-0.38675 X_{\mathrm{t}-1}+a_{\mathrm{t}}$	$a_{\mathrm{t}}-0.38675 a_{\mathrm{t}-1}$
2	$-0.48401 X_{\mathrm{t}-1}-0.25149 X_{\mathrm{t}-2}+a_{\mathrm{t}}$	$a_{\mathrm{t}}-0.48401 a_{\mathrm{t}-1}-0.0643 a_{\mathrm{t}-2}$
3	$-0.52059 X_{\mathrm{t}-1}-0.32189 X_{\mathrm{t}-2}-0.14546 X_{\mathrm{t}-3}+a_{\mathrm{t}}$	$a_{\mathrm{t}-}-0.52059 a_{\mathrm{t}-1}-0.06992 a_{\mathrm{t}-2}+0.0125 a_{\mathrm{t}-3}$
4	$-0.53818 X_{\mathrm{t}-1}-0.36081 X_{\mathrm{t}-2}-0.20841 X_{\mathrm{t}-3}$	$a_{\mathrm{t}-}-0.53818 a_{\mathrm{t}-1}-0.08064 a_{\mathrm{t}-2}+0.00386 a_{\mathrm{t}-3}-0.02384$
	$-0.12091 X_{\mathrm{t}-4}+a_{\mathrm{t}}$	$a_{\mathrm{t}-4}$
5	$-0.55532 X_{\mathrm{t}-1}-0.39035 X_{\mathrm{t}-2}-0.25955 X_{\mathrm{t}-3}$	$a_{\mathrm{t}}-0.55532 a_{\mathrm{t}-1}-0.09149 a_{\mathrm{t}-2}-0.01155 a_{\mathrm{t}-3}-0.04642$
	$-0.19719 X_{\mathrm{t}-4}-0.14174 X_{\mathrm{t}-5}+a_{\mathrm{t}}$	$a_{\mathrm{t}-4}-0.04043 a_{\mathrm{t}-5}$

In the $\mathrm{AR}(\mathrm{p})$ case we obtain the following results for $p=\overline{1,5}$.
Table 2 - Decomposition of X_{t} for ARIMA(p,1,0) time series

p	Simple fractions for AR(p)	Simple fractions for X_{t}
1		$\frac{0.72111}{1-L}+\frac{0.27819}{1+0.38675 L}$
2	$\frac{0.5+0.27549 i}{1+(0.24201-0.43923 i) L}+\frac{0.5-0.27549 i}{1+(0.24201+0.43923 i) L}$	$\begin{aligned} & \frac{0.5762}{1-L} \\ & +\frac{0.21899-0.48207 i}{1+(0.24201-0.43923 i) L}+\frac{0.21899+0.48207 i}{1+(0.24201+0.43923 i) L} \end{aligned}$
3	$\begin{gathered} \frac{0.44899}{1+0.48059 L} \\ +\frac{0.2755+0.26718 i}{1+(0.02-0.54979 i) L}+\frac{0.2755-0.26718 i}{1+(0.02+0.54979 i) L} \end{gathered}$	$\begin{aligned} & \frac{0.5762}{1-L} \\ & +\frac{0.21899-0.48207 i}{1+(0.24201-0.43923 i) L}+\frac{0.21899+0.48207 i}{1+(0.24201+0.43923 i) L} \end{aligned}$
4	$\begin{aligned} & \frac{0.15478+0.19809 i}{1-(0.18476+0.57486 i) L}+\frac{0.15478-0.19809 i}{1-(0.18476-0.57486 i) L} \\ & +\frac{0.34525+0.07649 i}{1+(0.45385-0.3544 i) L}+\frac{0.34525-0.07649 i}{1+(0.45385+0.3544 i) L} \end{aligned}$	$\begin{aligned} & \frac{0.44877}{1-L} \\ & +\frac{0.1424-0.0536 i}{1-(0.18476+0.57486 i) L}+\frac{0.1424+0.0536 i}{1-(0.18476-0.57486 i) L} \\ & +\frac{0.13321-0.02782 i}{1+(0.45385-0.3544 i) L}+\frac{0.13321+0.02782 i}{1+(0.45385+0.3544 i) L} \end{aligned}$
5	$\begin{gathered} \frac{0.28006}{1+0.64862 L} \\ +\frac{0.10794+0.13626 i}{1-(0.37203+0.58036 i) L}+\frac{0.10794-0.13626 i}{1-(0.37203-0.58036 i) L} \\ +\frac{0.25203-0.11077 i}{1+(0.32538+0.59495 i) L}+\frac{0.25203+0.11077 i}{1+(0.32538-0.59495 i) L} \end{gathered}$	$\begin{gathered} \hline \frac{0.3943}{1-L}+\frac{0.10759}{1+0.64862 L} \\ +\frac{0.12175-0.06692 i}{1-(0.37203+0.58036 i) L}+\frac{0.12175+0.06692 i}{1-(0.37203-0.58036 i) L} \\ +\frac{0.12731+0.02947 i}{1+(0.32538+0.59495 i) L}+\frac{0.12731-0.02947 i}{1+(0.32538-0.59495 i) L} \end{gathered}$

In the above table, for instance in the $\operatorname{AR}(3)$ model X_{t} is decomposed in three $\operatorname{AR}(1)$ time series with the polynomial $\varphi_{1}(L)=1+0.48059 L, \quad \varphi_{2}(L)=1+(0.02-0.54979 i) L \quad$ and $\varphi_{3}(L)=1+(0.02+0.54979 i) L$, and the white noises the white noise a_{t} of X_{t} multiplied by $0.44899,0.2755+0.26178$ i, respectively $0.44899,0.2755-0.26178$ i.

If we consider the non-zero expectation case, the above white noise a_{t} is substituted by the drifted noise $b_{t}=a_{t}+\varphi(1) \cdot m$, where $\varphi(L)=1+0.52059 L+0.32189 L^{2}+0.14546 L^{3}$, according Table 1, hence $\varphi(1)=1.98794$. Because $m=-0.04757$ it results that the drift is 0.09457 , hence we subtract from a_{t} the value 0.09457 . Using this b_{t} we obtain the same three components for initial time series, but b_{t} is multiplied by other coefficients: 0.14574 , $0.17561-0.0486 \mathrm{i}$, and $0.17561+0.0486 \mathrm{i}$. In addition, corresponding to the root $\mathrm{L}=1$ in the ARIMA case, we have an $\operatorname{ARIMA}(0,1,0)$ component Y_{t} such that the difference is b_{t} multiplied by 0.50303 . The decompositions of initial time series X_{t} and of the drifted noise b_{t} for $\operatorname{ARIMA}(0,1, \mathrm{q})$ are presented in the following table.

Table 3 - Decomposition of $X_{\mathrm{t}} a_{\mathrm{t}}$ for $\operatorname{ARIMA}(0,1, \mathrm{q})$ time series

q	Simple fractions for X_{t}	Simple fractions for a_{t}
1	$0.38675+\frac{0.61325}{1-L}$	$2.58565-\frac{1.58565}{1-0.38675 L}$
2	$0.54831+0.0643 L+\frac{0.45169}{1-L}$	$-\frac{0.5812}{1-0.59253 L}+\frac{1.5812}{1+0.10852 L}$
3	$0.57801+0.05742 L-0.0125 L^{2}+\frac{0.42199}{1-L}$	$-\frac{0.6125}{1-0.60223 L}+\frac{0.9556}{1+0.19056 L}+\frac{0.657}{1-0.10892 L}$
4	$0.6388+0.10062 L+0.01998 L^{2}$ $+0.02384 L^{3}+\frac{0.3612}{1-L}$	$+\frac{0.3719+0.2236 i}{1-(0.08377+0.30284 i) L}+\frac{0.2872}{1-(0.08377-0.30284 i) L}+\frac{0.5433}{1+0.33985 L}$
5	$0.74521+0.18989 L+0.0984 L^{2}$	
$+0.08685 L^{3}+0.04043 L^{4}+\frac{0.25479}{1-L}$	$+\frac{0.2381+0.196 i}{1-(0.21154+0.47124 i) L}+\frac{0.236}{1-(0.21154-0.47124 i) L}$	
	$+\frac{0.3138+0.1094 i}{1+(0.35392-0.23478 i) L}+\frac{0.3138-0.1094 i}{1+(0.35392+0.23478 i) L}$	

For instance, the decomposition of $\operatorname{ARIMA}(0,1,3)$ is $X_{\mathrm{t}}=0.57801 \quad b_{\mathrm{t}}+0.05742 b_{\mathrm{t}}$ ${ }_{1}+0.0125 b_{\mathrm{t}-2}+Y_{\mathrm{t}}$, where Y_{t} is an $\operatorname{ARIMA}(0,1,0)$ time series with difference equal to $0.42199 * b_{t}$.

In the following we consider the model ARIMA(p,1,q), where the size of the ARMA model, the value of $\mathrm{p}+\mathrm{q}$, is constant. The values of $\varphi(L)$ for $p=4,3,2,1$ are $1-0.05275 L-0.07812 L^{2}+0.04559 L^{3}+0.11309 L^{4}, 1-0.0486 L-0.48217 L^{2}-0.16583 L^{3}$, $1+0.55701 L-0.10944 L^{2}$, respectively $1+0.92335 L$. The corresponding values of $\theta(L)$ are $1-0.53855 L, 1-0.54042 L-0.41813 L^{2}, 1+0.07329 L-0.38463 L^{2}-0.10279 L^{3}$, and $1+0.61752 L-0.59303 L^{2}-0.21334 L^{3}-0.14483 L^{4}$.

Consider now $p+q=5$ with $1 \leq p \leq 4$. The results for decomposition of the ARMA (p, q) time series Y_{t} and of the initial $\operatorname{ARIMA}(\mathrm{p}, 1, \mathrm{q})$ time series X_{t} are presented in the following table.

Decomposition of the Time Series and of Shocks Using the Simple Fractions Decomposition and Applications

Table 4 - Decomposition of X_{t} and Y_{t} for $\operatorname{ARIMA}(\mathrm{p}, 1, \mathrm{q})$ time series with $\mathrm{p}+\mathrm{q}=5$

p	Simple fractions for Y_{t}	Simple fractions for X_{t}
4	$\begin{aligned} & \frac{0.38451-0.19825 i}{1+(0.42136+0.35245 i) L}+\frac{0.38451+0.19825 i}{1+(0.42136-0.35245 i) L}+ \\ & \frac{0.1155-0.15024 i}{1-(0.44774-0.41748 i) L}+\frac{0.1155+0.15024 i}{1-(0.44774+0.41748 i) L} \end{aligned}$	$\begin{aligned} & \frac{0.44896}{1-L}+ \\ & \frac{0.16224-0.00366 i}{1+(0.42136+0.35245 i) L}+\frac{0.16224+0.00366 i}{1+(0.42136-0.35245 i) L}+ \\ & \frac{0.11328+0.12348 i}{1-(0.44774-0.41748 i) L}+\frac{0.11328-0.12348 i}{1-(0.44774+0.41748 i) L} \end{aligned}$
3	$\begin{aligned} & \frac{0.54943+0.0823 i}{1+(0.61666+0.29215 i) L}+\frac{0.54943-0.0823 i}{1+(0.61666-0.29215 i) L}- \\ & \frac{0.09886}{1-0.84791 L} \end{aligned}$	$\begin{aligned} & \frac{0.13662}{1-L}+\frac{0.15613+0.0767 i}{1+(0.61666+0.29215 i) L}+ \\ & \frac{0.15613-0.0767 i}{1+(0.61666-0.29215 i) L}+\frac{0.55113}{1-0.84791 L} \end{aligned}$
2	$-\frac{7.64178}{1-0.15394 L}+\frac{0.34688}{1+0.71095 L}+8.2949+0.93924 L$	$\frac{0.40473}{1-L}+\frac{1.39037}{1-0.15394 L}+\frac{0.14414}{1+0.71095 L}-0.93924$
1	$\begin{aligned} & -\frac{0.2926}{1+0.92335 L}+1.2926-0.576 L- \\ & 0.06118 L^{2}-0.15685 L^{3} \end{aligned}$	$\begin{aligned} & \frac{0.34644}{1-L}-\frac{0.14047}{1+0.92335 L}+0.79403+ \\ & 0.21803 L+0.15685 L^{2} \end{aligned}$

The corresponding decompositions of the white noise in the ARMA and ARIMA cases are presented in Table 6, that follows.

Table 5 - Decomposition of a_{t} for $\operatorname{ARIMA}(\mathrm{p}, 1, \mathrm{q})$ time series with $\mathrm{p}+\mathrm{q}=5$

p	Simple fractions for ARMA(p,q)	Simple fractions for X_{t}
4	$\frac{1.47457}{1-0.53855 L}+0.42182+0.39645 L+$	$-\frac{1.94412}{1-0.53855 L}-1.58556-0.28694 L-$
	$0.25558 L^{2}+0.11309 L^{3}$	$0.14087 L^{2}-0.14249 L^{3}-0.11309 L^{4}$
3	$\frac{0.18107}{1+0.43061 L}+\frac{0.17836}{1-0.97103 L}+$	$\frac{0.60158}{1+0.43061 L}-\frac{0.00532}{1-0.97103 L}+0.40374-$
	$0.64057+0.3966 L$	$0.24397 L-0.3966 L^{2}$
2	$\frac{0.117357+2.82097 i}{1+(0.38772+0.02902 i) L}+$	$-1.0647+\frac{1.17618+10.09684 i}{1+(0.38772+0.02902 i) L}+$
	$\frac{0.117357-2.82097 i}{1+(0.38772-0.02902 i) L}+\frac{0.65287}{1-0.69415 L}$	$\frac{1.17618-10.09684 i}{1+(0.38772-0.02902 i) L}-\frac{0.28767}{1-0.69415 L}$
	$\frac{0.60294-0.28271 i}{1+(0.15477+0.38077 i) L}+$	
	$\frac{0.20482-0.09338 i}{1+(0.15477-0.38077 i) L}+$	$\frac{0.60294+0.28271 i}{1+(0.15477-0.38077 i) L}-$
	$\frac{0.6087}{1-0.78463 L}-\frac{0.01835}{1+0.89667 L}$	$\frac{0.16708}{1-0.78463 L}-\frac{0.03881}{1+0.89667 L}$

CONCLUSIONS

In $[2,3,4]$ the decomposition of a time series in seasonal component, trend and stationary has been performed using for instance moving average. Analogously, if we use the differentiation and/ or seasonal differentiation we can group the root one and the complex unit root for seasonal differentiation. Other decompositions are performed due to economic reasons, as the decomposition of GDP in $[1,5]$. An open problem is if the economic decomposition can be naturally performed by grouping this paper decomposition of time series.

We have said "similar to $\operatorname{ARMA}(2 * \mathrm{~m}, \mathrm{~m})$ " instead of $\operatorname{ARMA}(2 * \mathrm{~m}, \mathrm{~m})$ in Section 2, because the roots of numerator are not necessary in absolute value greater than one. For instance, in the case of $\operatorname{AR}(5)$, if we add the corresponding $\operatorname{AR}(1)$ components $\frac{0.2755+0.26718 i}{1+(0.02-0.54979 i) L}$ and the conjugate, we obtain $\frac{0.21588-0.23847 L}{(1+(0.02-0.54979 i) L)(1+(0.02+0.54979 i) L)}, \quad$ which has obviously roots for denominator greater than one in absolute value, but the numerator has the root $\mathrm{L}=0.90523$! For MA(q) with $q=\overline{2,5}$ the quote of degree $\mathrm{q}-1$ has in all four cases in Table 3 roots greater than one in absolute value. An open problem is if this is a rule, or it happens in our example and other ones.

REFERENCES

[1] L.-L. Albu, E. Pelinescu and C. Scutaru, Modele si prognoze pe termen scurt. Aplicaţii pentru România, Ed. Expert, Bucharest, 2003.
[2] P.J. Brockwell and R.A. Davis, Springer Texts in Statistics. Introduction to Time Series and Forecasting, Springer-Verlag, 2002.
[3] D. Jula and N.-M. Jula, Prognoza economică, Ed. Mustang, Bucharest, 2015.
[4] Th. Popescu, Serii de timp. Aplicatii în analiza sistemelor, Ed. Tehnica, Bucharest, 2000.
[5] Steindel, Ch., "Chain weighting: the new approach to measuring GDP", Current Issues in Economics and Finance, 1(9), 1995, pp. 1-6.
[6] "Buletinul Institutului National de Statistică", www.insse.ro.
APPENDIX A. ROOTS FOR MOVING AVERAGE
Table 6 - Roots for even values of q

q	Real root ≥-1	The other absolute values ≤ 1	The other angles in degrees
2	-0.38197		
4	-0.52031	0.55242	83.22129
6	-0.60296	0.65776; 0.61432	66.52096; 56.51432
8	-0.65882	0.72426; 0.68255; 0.66423	85.88092; 50,73123; 42.88701
10	-0.69947	0.76948; 0.73145; 0.71223; 0.70249	$\begin{aligned} & 76.67192 ; 69.20316 ; 41.01439 ; \\ & 34.58262 \end{aligned}$
12	-0.73058	$\begin{aligned} & 0.8021 ; 0.76772 ; 0.74918 ; 0.73821 ; \\ & 0.73244 \end{aligned}$	$\begin{aligned} & 87.02103 ; 63.84469 ; 57.98187 ; \\ & 34.42691 ; 28.98308 \end{aligned}$
14	-0.75264	$\begin{aligned} & 0.82669 ; 0.79555 ; 0.77812 ; 0.76717 \text {; } \\ & 0.76031 ; 0.75649 \end{aligned}$	80.1066; 74.88039; 55.00913; 49.90537; 29.66504; 29.94881
16	-0.77539	$\begin{aligned} & 0.84588 ; 0.8175 ; 0.80126 ; 0.79065 \text {; } \\ & 0.78351 ; 0.77887 ; 0.77624 \end{aligned}$	$\begin{aligned} & 87.66116 ; 70.36931 ; 65.72646 ; \\ & 48.32439 ; 43.80988 ; 26.06156 ; \\ & 21.90285 \end{aligned}$
18	-0.79215	$\begin{aligned} & 0.86126 ; 0.83525 ; 0.82012 ; 0.81001 ; \\ & 0.80291 ; 0.79796 ; 0.79466 ; 0.79277 \end{aligned}$	$\begin{aligned} & 82.33238 ; 78.11198 ; 62.74497 ; \\ & 58.57341 ; 43.08966 ; 39.04454 ; \\ & 23.23933 ; 19.52106 \end{aligned}$
20	-0.80635	$\begin{aligned} & 0.87389 ; 0.84988 ; 0.83578 ; 0.82619 ; \\ & 0.81929 ; 0.81426 ; 0.81066 ; 0.80822 ; \\ & 0.80621 \end{aligned}$	$\begin{aligned} & 88.07264 ; 74.2845 ; 70.44565 ; \\ & 56.61257 ; 52.82802 ; 38.87899 \\ & 35.21603 ; 20.96897 ; 17.60727 \\ & \hline \end{aligned}$

Decomposition of the Time Series and of Shocks Using the Simple Fractions Decomposition and Applications

Table 7 - Roots for odd values of q

q	The absolute values ≤ 1	The angles in degrees
3	0.47568	54.41846
5	0.61161; 0.57041	78.82098; 33.58896
7	0.69447; 0.65137; 0.63517	73.19168; 57.55775; 24.36856
9	0.70893; 0.68982; 0.68159; 0.74885	84.13503; 54.44701; 45.35669; 19.14011
11	0.78702; 0.75086; 0.73188; 0.72136; 0.71657	$\begin{aligned} & \text { 78.89304; 69.4227; 47.30958; 37.43245; } \\ & \text { 15.76617 } \end{aligned}$
13	0.8152; $0.7825 ; 0.7645 ; 0.7535 ; 0.74701 ; 0.74396$	$\begin{aligned} & \text { 86.06313;67.06126; 59.0979; 40.22503; } \\ & 31.86881 ; 13.40661 \end{aligned}$
15	0.83685; 0.80714; 0.7903; 0.7795; 0.77244; 0.76812	81.68513; 74.92242; 58.32909; 51.45025; 34.99151; 27.74666; 11.66294
17	$\begin{aligned} & 0.85397 ; 0.82683 ; 0.81115 ; 0.80078 ; 0.79364 ; \\ & 0.7888 ; 0.78577 ; 0.78431 \end{aligned}$	$\begin{aligned} & 87.0486 ; 72.27458 ; 66.33853 ; 51.6154 ; \\ & 45.55699 ; 30.96595 ; 24.56959 ; 10.32147 \end{aligned}$
19	$\begin{aligned} & 0.86786 ; 0.8439 ; 0.8283 ; 0.81844 ; 0.81442 ; 0.80643 ; \\ & 0.80294 ; 0.80073 ; 0.79966 \end{aligned}$	$\begin{aligned} & 83.3456 ; 78.10145 ; 64.81504 ; 59.52108 ; \\ & 46.29108 ; 40.87608 ; 27.7727 ; 22.04581 \text {; } \\ & 9.25726 \end{aligned}$

