DECOMPOSITION OF THE TIME SERIES AND OF SHOCKS USING THE SIMPLE FRACTIONS DECOMPOSITION AND APPLICATIONS

Daniel CIUIU

Technical University of Civil Engineering Bucharest (dciuiu@yahoo.com)

DOI: 10.19062/1842-9238.2017.15.2.4

Abstract: In this paper we will use the decomposition of rational functions in simple fractions. The rational functions are build using the delay polynomials $\varphi(L)$ and $\theta(L)$ of an ARIMA time series.

For decomposition of the time series X_t we use the rational fraction $\frac{\theta(L)}{\varphi(L)}$, and for the decomposition of the white noise a_t we use the rational fraction $\frac{\varphi(L)}{\varphi(L)}$.

Finally, because for the decomposition of X_t we do not take into account that the roots of $\varphi(L)$ are greater than one in absolute value, we eventually multiply in the first above case $\varphi(L)$ by $(1-L)^d$ for taking into account the possible trend and by $(1-L^s)^{d_s}$ for taking into account the possible seasonal components.

Keywords: ARMA and ARIMA time series, delay operator, delay polynomials.

1. INTRODUCTION

The classical decomposition of time series is [3,4] in seasonal components, trend and a stationary component. The remaining stationary component, even we obtain it by removing seasonal components and trend, even we obtain it by seasonal and non-seasonal differentiation, is modeled as AR(p), MA(q) or ARMA(p,q) time series.

For an ARMA(p,q) we can write

$$\varphi(L)X_t = \theta(L)a_t$$
, where (1)

$$\begin{cases} \varphi(L) = 1 - \sum_{i=1}^{p} \varphi_i L^i \\ \theta(L) = 1 - \sum_{i=1}^{q} \theta_i L^i \end{cases}.$$

$$(1')$$

Using the above formula, we obtain [2,3,4]

$$\begin{cases} X_t = \frac{\theta(L)}{\varphi(L)} a_t \\ a_t = \frac{\varphi(L)}{\theta(L)} X_t \end{cases}.$$
(1")

2. THE DECOMPOSITION OF TIME SERIES

For decomposition of X_t we use the decomposition in simple fractions of $\frac{\theta(L)}{\varphi(L)}$. Denote now the roots of $\varphi(L) x_1, ..., x_l$ with the multiplicities $m_1, ..., m_l$.

If X_t is ARMA(p,q) with p > q, there exists the white noise a_t such that

$$X_{t} = \sum_{i=1}^{l} \sum_{j=1}^{m_{i}} \frac{A_{ij}}{\left(1 - x_{i} \cdot L\right)^{j}} a_{t}.$$
(2)

If we have $p \leq q$, the above formula becomes

$$X_{t} = \tilde{\theta}(L)a_{t} + \sum_{i=1}^{l}\sum_{j=1}^{m_{i}}\frac{A_{ij}}{\left(1 - x_{i} \cdot L\right)^{j}}a_{t}, \text{ where}$$

$$\tag{2'}$$

 $\tilde{\theta}(L)$ is the quote of $\frac{\theta(L)}{\varphi(L)}$.

In formulae (2) and (2') the roots of $\varphi(L)$ can be complex. In this case we can group the conjugate complex roots. We obtain at denominator $(1-2\operatorname{Re}(z_i)+|z|^2)^{m_i}$, and the numerator becomes a real polynomial of degree m_i . In the case $m_i = 1$ (simple complex roots), we obtain a linear numerator, and a second degree function at denominator. It results that if p > q, the ARMA(p,q) is a sum of AR(j) with $1 \le j \le m_i$ for real x_i , and a time series similar to $ARMA(2 \cdot m_i, m_i)$ for complex conjugate roots with the multiplicity m_i . All the above parts of X_t have the same white noise a_t , except multiplying by a constant. If p = q we add to the above decomposition the term $\frac{\theta_p}{\theta_p}a_t$, and if p < q we add the term $\tilde{\theta}(L)a_i$, i.e. a polynomial of degree q - p in lag L applied to the same white noise a_t .

If we consider the reverse in (1"), we decompose analogously a_t in terms of X_t . For forecasting we can forecast each term in the decomposition of X_t . In the above decomposition of X_t the fact that the roots of $\varphi(L)$ are in absolute value grater than one is used only for stationarity, not for decomposition. For instance, if the time series is ARIMA(p,d,q) we use instead of $\varphi(L)$ $(1-L)^d \varphi(L)$. If we group the unit root and the roots of $\varphi(L)$, we obtain a decomposition in ARIMA(0, j, 0) with $j = \overline{1, d}$ and an ARMA(p,q) time series. If we perform also the seasonal differentiation $(1-L^s)^{d_s}$, we group also the complex roots of equation $L^s = 1$.

In the case of stationarizing using the removing trend by moving average method, we have to find the roots of $\sum_{j=0}^{2,q} L^j - (2 \cdot q + 1)L^q = 0$, corresponding to the differences $\hat{m}_{t-q} - X_{t-q}$, i.e the reminding stationary time series after removing the moving average of order $2 \cdot q + 1$, with opposite sign. Using two times the scheme of Horner, we obtain L = 1 of multiplicity 2. The other roots are the roots of polynomial

$$\sum_{j=0}^{q-1} \frac{(j+1)(j+2)}{2} \left(L^{j} + L^{2\cdot q-j} \right) + \frac{q(q+1)}{2} L^{q} .$$
(3)

By multiplying $\sum_{j=0}^{2\cdot q} L^j - (2\cdot q+1)L^q = 0$ by *L*-1, we can prove that the only multiple root is one (multiplicity is two), and we have no other root on the unit circle. Between the other $2\cdot q - 2$ roots we can prove that we have at most two real roots. From the theory of symmetric polynomials, it results that mainly the other $2\cdot q - 2$ roots are clustered in

groups of four: L_j , $\overline{L_j}$, $\frac{1}{L_j}$ and $\frac{1}{L_j}$. The two real roots appear if four does not divide $2 \cdot q - 2$, hence for even values of q. For odd values of q, these solutions are all simple and conjugated complex in the above groups of four. If we use a moving average with q = 1, the roots are $L_1 = L_2 = 1$. If q = 2, the other two roots are the roots of second degree equation $L^2 + 3L + 1 = 0$, having the roots $-\alpha_1^2$ and $-\alpha_2^2$, where $\alpha_j = \frac{1\pm\sqrt{5}}{2}$, from Fibonacci stream. The roots of polynomial involving moving average of order $2 \cdot q + 1$ with even and odd q are presented in Tables 6 and 7, Appendix A.

The following structure of solutions has not been proved, but it was checked for q = 4, 6, ..., 20, q = 100, q = 500 and q = 1000, and for q = 3, 5, ..., 19, q = 99, q = 499 and q = 999. For even values of q the real negative roots make a circular crown with the radius the absolute values (the other roots have the absolute values between the two radius). The minimum absolute value (that of the real root ≥ -1) increases from 0.38197 for q=2 to 0.806351 for q=20, 0.94207 for q=100, 0.98493 for q=500 and 0.99174 for q=1000. For the minimum argument of complex roots expressed in degrees, the value 360

 $\frac{300}{\arg\min \cdot q}$ decreases from 1.08145 for q=4 to 1.0223052 for q=20, 1.0048508 for q=100,

1.0009924 for q=500, and 1.0004979 for q=1000. For odd values of q we have not real roots (all roots are complex in above groups of four). But the minimum absolute value is also increasing on q: from 0.47568 for q=3 to 0.79966 for q=19, 0.94161 for q=99, 0.9849 for q=499, and 0.99174 for q=999. The expression $\frac{180}{\arg \min \cdot q}$ decreases from 1.102567 for q=3 to 1.023379 for q=19, 1.0048986 for q=99, 1.0009944 for q=499, and 1.0004984 for q=999.

In the case of exponential smooth we multiply $\varphi(L)$ by $\frac{1-L}{1-\alpha L}$, where α is the ratio of decreasing the weights of exponential smooth. If α is the inverse of a root of $\varphi(L)$, we divide φ by $1-\alpha L$, otherwise we multiply θ by $1-\alpha L$. Of course, in both cases we multiply φ by 1-L.

The effective decomposition of X_t is made starting from the moment t just before the first computed a_t . For instance, in an AR(p) model first t is p. We decompose this first X_t in $X_t^{(1)}, \ldots, X_t^{(p)}$, and $b_t^{(j)}$ are the drifted white noises from the initially one multiplied by the constants from fractions decomposition. It results a linear regression with the coefficients $X_t^{(1)}, \ldots, X_t^{(p)}$. The white noise starts in decomposition of X_t by multiplied by the constants, and b_t is decomposed in MA(1) like white noises ($X_t^{(j)}$ is revertible, but not necessary stationary).

3. APPLICATION

Consider the CPI (Consumer Prices Index) from Buletinul Institutului National de Statistică [6] expressed in percentage of current month related to previous, in the period January 1991 - February 2017.

We want to express the time series X_t as in ARIMA model, and next to decompose the time series X_t and the white noise a_t . First we notice that, using the Dickey - Fuller unit root test [2] that the time series is not stationary, but the difference $\Delta X_t = X_t - X_{t-1}$ is. In the case of AR (p) and MA(q)with $p, q = \overline{0,5}$, not both zero, the representations of X_t are presented in Table 1, that follows.

Table 1 – Representations of X_t for AR (p) and MA(q) time series			
pq	AR(p)	$\frac{MA(q)}{MA(q)}$	
1	$-0.38675 X_{t-1} + a_t$	a_{t} -0.38675 a_{t-1}	
2	$-0.48401 X_{t-1} - 0.25149 X_{t-2} + a_t$	a_{t} -0.48401 a_{t-1} -0.0643 a_{t-2}	
3	$-0.52059 X_{t-1}$ -0.32189 X_{t-2} -0.14546 X_{t-3} + a_t	a_{t} -0.52059 a_{t-1} -0.06992 a_{t-2} +0.0125 a_{t-3}	
4	-0.53818 X_{t-1} -0.36081 X_{t-2} -0.20841 X_{t-3}	a_{t} -0.53818 a_{t-1} -0.08064 a_{t-2} +0.00386 a_{t-3} -0.02384	
	$-0.12091 X_{t-4} + a_t$	$a_{ m t-4}$	
5	$-0.55532 X_{t-1} - 0.39035 X_{t-2} - 0.25955 X_{t-3}$	a_{t} -0.55532 a_{t-1} -0.09149 a_{t-2} -0.01155 a_{t-3} -0.04642	
	$-0.19719 X_{t-4} - 0.14174 X_{t-5} + a_t$	a_{t-4} -0.04043 a_{t-5}	

In the AR(p) case we obtain the following results for $p = \overline{1,5}$.

	1 able 2 = 1	Decomposition of X_t for ARIMA(p,1,0) time series
р	Simple fractions for AR(p)	Simple fractions for X _t
1		$\frac{0.72111}{1-L} + \frac{0.27819}{1+0.38675L}$
2	$\frac{0.5+0.27549i}{1+(0.24201-0.43923i)L} + \frac{0.5-0.27549i}{1+(0.24201+0.43923i)L}$	$\frac{\frac{0.5762}{1-L}}{+\frac{0.21899-0.48207i}{1+(0.24201-0.43923i)L}} + \frac{0.21899+0.48207i}{1+(0.24201+0.43923i)L}$
3	$\frac{\frac{0.44899}{1+0.48059L}}{+\frac{0.2755+0.26718i}{1+(0.02-0.54979i)L}+\frac{0.2755-0.26718i}{1+(0.02+0.54979i)L}}$	$\frac{\frac{0.5762}{1-L}}{+\frac{0.21899-0.48207i}{1+(0.24201-0.43923i)L}} + \frac{0.21899+0.48207i}{1+(0.24201+0.43923i)L}$
4	$\frac{0.15478 + 0.19809i}{1 - (0.18476 + 0.57486i)L} + \frac{0.15478 - 0.19809i}{1 - (0.18476 - 0.57486i)L} + \frac{0.34525 + 0.07649i}{1 + (0.45385 - 0.3544i)L} + \frac{0.34525 - 0.07649i}{1 + (0.45385 + 0.3544i)L}$	$\frac{\frac{0.44877}{1-L}}{+\frac{0.1424-0.0536i}{1-(0.18476+0.57486i)L}} + \frac{0.1424+0.0536i}{1-(0.18476-0.57486i)L} \\ + \frac{0.13321-0.02782i}{1+(0.45385-0.3544i)L} + \frac{0.13321+0.02782i}{1+(0.45385+0.3544i)L}$
5	$\frac{\frac{0.28006}{1+0.64862L}}{+\frac{0.10794+0.13626i}{1-(0.37203+0.58036i)L}} + \frac{0.10794-0.13626i}{1-(0.37203-0.58036i)L} + \frac{0.25203-0.11077i}{1+(0.32538+0.59495i)L} + \frac{0.25203+0.11077i}{1+(0.32538-0.59495i)L}$	$\frac{\frac{0.3943}{1-L}}{1+0.64862L} + \frac{\frac{0.10759}{1+0.64862L}}{\frac{0.12175-0.06692i}{1-(0.37203+0.58036i)L}} + \frac{\frac{0.12175+0.06692i}{1-(0.37203-0.58036i)L}}{\frac{0.12731+0.02947i}{1+(0.32538+0.59495i)L}} + \frac{\frac{0.12731-0.02947i}{1+(0.32538-0.59495i)L}}{\frac{0.12731-0.02947i}{1+(0.32538-0.59495i)L}}$

Table 2 – Decomposition of X_t for ARIMA(p,1,0) time series

In the above table, for instance in the AR(3) model X_t is decomposed in three AR(1) time series with the polynomial $\varphi_1(L) = 1 + 0.48059L$, $\varphi_2(L) = 1 + (0.02 - 0.54979i)L$ and $\varphi_3(L) = 1 + (0.02 + 0.54979i)L$, and the white noises the white noise a_t of X_t multiplied by 0.44899, 0.2755+0.26178 i, respectively 0.44899, 0.2755-0.26178 i.

If we consider the non-zero expectation case, the above white noise a_t is substituted by the drifted noise $b_t = a_t + \varphi(1) \cdot m$, where $\varphi(L) = 1 + 0.52059 L + 0.32189 L^2 + 0.14546 L^3$, according Table 1, hence $\varphi(1)=1.98794$. Because m=-0.04757 it results that the drift is -0.09457, hence we subtract from a_t the value 0.09457. Using this b_t we obtain the same three components for initial time series, but b_t is multiplied by other coefficients: 0.14574, 0.17561-0.0486 i, and 0.17561+0.0486 i. In addition, corresponding to the root L=1 in the ARIMA case, we have an ARIMA(0,1,0) component Y_t such that the difference is b_t multiplied by 0.50303. The decompositions of initial time series X_t and of the drifted noise b_t for ARIMA(0,1,q) are presented in the following table.

	Table 3 – Decomposition of $X_t a_t$ for ARIMA(0,1,q) time set			
q	Simple fractions for X_t	Simple fractions for a_t		
1	$0.38675 + \frac{0.61325}{1-L}$	$2.58565 - \frac{1.58565}{1 - 0.38675 L}$		
2	$0.54831 + 0.0643L + \frac{0.45169}{1-L}$	$-\frac{0.5812}{1-0.59253L} + \frac{1.5812}{1+0.10852L}$		
3	$0.57801 + 0.05742L - 0.0125L^2 + \frac{0.42199}{1-L}$	$-\frac{0.6125}{1-0.60223L} + \frac{0.9556}{1+0.19056L} + \frac{0.657}{1-0.10892L}$		
4	$0.6388 + 0.10062 L + 0.01998 L^{2}$ $+ 0.02384 L^{3} + \frac{0.3612}{1 - L}$	$-\frac{0.2872}{1-0.7105L} + \frac{0.5433}{1+0.33985L} + \frac{0.3719 + 0.2236i}{1-(0.08377 + 0.30284i)L} + \frac{0.3719 - 0.2236i}{1-(0.08377 - 0.30284i)L}$		
5	$0.74521 + 0.18989 L + 0.0984 L^{2}$ $+ 0.08685 L^{3} + 0.04043 L^{4} + \frac{0.25479}{1 - L}$	$-\frac{0.1038}{1-0.84007L} + \frac{0.2381+0.196i}{1-(0.21154+0.47124i)L} + \frac{0.2381-0.196i}{1-(0.21154-0.47124i)L} + \frac{0.3138+0.1094i}{1+(0.35392-0.23478i)L} + \frac{0.3138-0.1094i}{1+(0.35392+0.23478i)L}$		

Table 3 – Decomposition of $X_t a_t$ for ARIMA(0,1,q) time series

For instance, the decomposition of ARIMA(0,1,3) is $X_t=0.57801 \ b_t+0.05742 \ b_{t-1}+0.0125 \ b_{t-2}+Y_t$, where Y_t is an ARIMA(0,1,0) time series with difference equal to $0.42199*b_t$.

In the following we consider the model ARIMA(p,1,q), where the size of the ARMA model, the value of p+q, is constant. The values of $\varphi(L)$ for p=4,3,2,1 are $1-0.05275L-0.07812L^2+0.04559L^3+0.11309L^4$, $1-0.0486L-0.48217L^2-0.16583L^3$, $1+0.55701L-0.10944L^2$, respectively 1+0.92335L. The corresponding values of $\theta(L)$ are 1-0.53855L, $1-0.54042L-0.41813L^2$, $1+0.07329L-0.38463L^2-0.10279L^3$, and $1+0.61752L-0.59303L^2-0.21334L^3-0.14483L^4$.

Consider now p+q=5 with $1 \le p \le 4$. The results for decomposition of the ARMA(p,q) time series Y_t and of the initial ARIMA(p,1,q) time series X_t are presented in the following table.

Decomposition of the Time Series and of Shocks Using the Simple Fractions Decomposition and Applications

	Table 4 – Decomposition of X_t and Y_t for ARIMA(p,1,q) time series with p+q=		
р	Simple fractions for $Y_{\rm t}$	Simple fractions for X_t	
4	$\frac{0.38451 - 0.19825i}{1 + (0.42136 + 0.35245i)L} + \frac{0.38451 + 0.19825i}{1 + (0.42136 - 0.35245i)L} + \frac{0.1155 - 0.15024i}{1 - (0.44774 - 0.41748i)L} + \frac{0.1155 + 0.15024i}{1 - (0.44774 + 0.41748i)L}$	$\frac{\frac{0.44896}{1-L}}{\frac{0.16224-0.00366i}{1+(0.42136+0.35245i)L}} + \frac{0.16224+0.00366i}{1+(0.42136-0.35245i)L} + \frac{0.11328+0.12348i}{1-(0.44774+0.41748i)L}$	
3	$\frac{\frac{0.54943 + 0.0823i}{1 + (0.61666 + 0.29215i)L} + \frac{0.54943 - 0.0823i}{1 + (0.61666 - 0.29215i)L} - \frac{0.09886}{1 - 0.84791L}$	$\frac{0.13662}{1-L} + \frac{0.15613 + 0.0767i}{1+(0.61666 + 0.29215i)L} + \frac{0.15613 - 0.0767i}{1+(0.61666 - 0.29215i)L} + \frac{0.55113}{1-0.84791L}$	
2	$-\frac{7.64178}{1-0.15394L} + \frac{0.34688}{1+0.71095L} + 8.2949 + 0.93924L$	$\frac{0.40473}{1-L} + \frac{1.39037}{1-0.15394L} + \frac{0.14414}{1+0.71095L} - 0.93924$	
1	$-\frac{0.2926}{1+0.92335L}+1.2926-0.576L-$ $0.06118L^2-0.15685L^3$	$\frac{0.34644}{1-L} - \frac{0.14047}{1+0.92335L} + 0.79403 + 0.21803L + 0.15685L^2$	

The corresponding decompositions of the white noise in the ARMA and ARIMA cases are presented in Table 6, that follows.

	Table 5 – Decomposition of u_t for ARIWA(p,1,q) time series with p		
р	Simple fractions for ARMA(p,q)	Simple fractions for X _t	
4	$\frac{1.47457}{1-0.53855L} + 0.42182 + 0.39645L + 0.25558L^2 + 0.11309L^3$	$-\frac{1.94412}{1-0.53855L} - 1.58556 - 0.28694L - 0.14087L^2 - 0.14249L^3 - 0.11309L^4$	
3	$\frac{0.18107}{1+0.43061L} + \frac{0.17836}{1-0.97103L} + \\0.64057 + 0.3966L$	$\frac{0.60158}{1+0.43061L} - \frac{0.00532}{1-0.97103L} + 0.40374 - 0.24397L - 0.3966L^2$	
2	$\frac{0.117357 + 2.82097i}{1 + (0.38772 + 0.02902i)L} + \frac{0.117357 - 2.82097i}{1 + (0.38772 - 0.02902i)L} + \frac{0.65287}{1 - 0.69415L}$	$-1.0647 + \frac{1.17618 + 10.09684i}{1 + (0.38772 + 0.02902i)L} + \frac{1.17618 - 10.09684i}{1 + (0.38772 - 0.02902i)L} - \frac{0.28767}{1 - 0.69415L}$	
1	$\frac{0.20482 + 0.09338i}{1 + (0.15477 + 0.38077i)L} + \frac{0.20482 - 0.09338i}{1 + (0.15477 - 0.38077i)L} + \frac{0.6087}{1 - 0.78463L} - \frac{0.01835}{1 + 0.89667L}$	$\frac{\frac{0.60294 - 0.28271i}{1 + (0.15477 + 0.38077i)L} + \frac{0.60294 + 0.28271i}{1 + (0.15477 - 0.38077i)L} - \frac{0.16708}{1 - 0.78463L} - \frac{0.03881}{1 + 0.89667L}$	

Table 5 – Decomposition of a_t for ARIMA(p,1,q) time series with p+q=5

CONCLUSIONS

In [2,3,4] the decomposition of a time series in seasonal component, trend and stationary has been performed using for instance moving average. Analogously, if we use the differentiation and/ or seasonal differentiation we can group the root one and the complex unit root for seasonal differentiation. Other decompositions are performed due to economic reasons, as the decomposition of GDP in [1,5]. An open problem is if the economic decomposition can be naturally performed by grouping this paper decomposition of time series.

We have said "similar to ARMA(2*m,m)" instead of ARMA(2*m,m) in Section 2, because the roots of numerator are not necessary in absolute value greater than one. For instance, in the case of AR(5), if we add the corresponding AR(1) components

 $\frac{0.2755 + 0.26718i}{1 + (0.02 - 0.54979i)L}$ and the conjugate, we obtain

 $\frac{0.21588 - 0.23847 L}{(1 + (0.02 - 0.54979 i)L)(1 + (0.02 + 0.54979 i)L)}, \text{ which has obviously roots for denominator granter than one in absolute value, but the numerator has the root$

denominator greater than one in absolute value, but the numerator has the root L=0.90523! For MA(q) with $q = \overline{2,5}$ the quote of degree q-1 has in all four cases in Table 3 roots greater than one in absolute value. An open problem is if this is a rule, or it happens in our example and other ones.

REFERENCES

- [1] L.-L. Albu, E. Pelinescu and C. Scutaru, Modele si prognoze pe termen scurt. Aplicații pentru România, Ed. Expert, Bucharest, 2003.
- [2] P.J. Brockwell and R.A. Davis, Springer Texts in Statistics. Introduction to Time Series and Forecasting, Springer-Verlag, 2002.
- [3] D. Jula and N.-M. Jula, *Prognoza economică*, Ed. Mustang, Bucharest, 2015.
- [4] Th. Popescu, Serii de timp. Aplicatii în analiza sistemelor, Ed. Tehnica, Bucharest, 2000.
- [5] Steindel, Ch., "Chain weighting: the new approach to measuring GDP", Current Issues in Economics and Finance, 1(9), 1995, pp. 1-6.
- [6] "Buletinul Institutului National de Statistică", www.insse.ro.

APPENDIX A. ROOTS FOR MOVING AVERAGE

Table 6 – Roots for even values of q

q	Real root ≥ -1	The other absolute values ≤ 1	The other angles in degrees
2	-0.38197		
4	-0.52031	0.55242	83.22129
6	-0.60296	0.65776; 0.61432	66.52096; 56.51432
8	-0.65882	0.72426; 0.68255; 0.66423	85.88092; 50,73123; 42.88701
10	-0.69947	0.76948; 0.73145; 0.71223; 0.70249	76.67192; 69.20316; 41.01439; 34.58262
12	-0.73058	0.8021; 0.76772; 0.74918; 0.73821; 0.73244	87.02103; 63.84469; 57.98187; 34.42691; 28.98308
14	-0.75264	0.82669; 0.79555; 0.77812; 0.76717; 0.76031; 0.75649	80.1066; 74.88039; 55.00913; 49.90537; 29.66504; 29.94881
16	-0.77539	0.84588; 0.8175; 0.80126; 0.79065; 0.78351; 0.77887; 0.77624	87.66116; 70.36931; 65.72646; 48.32439; 43.80988; 26.06156; 21.90285
18	-0.79215	0.86126; 0.83525; 0.82012; 0.81001; 0.80291; 0.79796; 0.79466; 0.79277	82.33238; 78.11198; 62.74497; 58.57341; 43.08966; 39.04454; 23.23933; 19.52106
20	-0.80635	0.87389; 0.84988; 0.83578; 0.82619; 0.81929; 0.81426; 0.81066; 0.80822; 0.80621	88.07264; 74.2845; 70.44565; 56.61257; 52.82802; 38.87899; 35.21603; 20.96897; 17.60727

Decomposition of the Time Series and of Shocks Using the Simple Fractions Decomposition and Applications

		Table 7 – Roots for odd values of c
q	The absolute values ≤ 1	The angles in degrees
3	0.47568	54.41846
5	0.61161; 0.57041	78.82098; 33.58896
7	0.69447; 0.65137; 0.63517	73.19168; 57.55775; 24.36856
9	0.70893; 0.68982; 0.68159; 0.74885	84.13503; 54.44701; 45.35669; 19.14011
11	0.78702; 0.75086; 0.73188; 0.72136; 0.71657	78.89304; 69.4227; 47.30958; 37.43245;
11		15.76617
13	0.8152; 0.7825; 0.7645; 0.7535; 0.74701; 0.74396	86.06313;67.06126; 59.0979; 40.22503;
15		31.86881; 13.40661
15	0.83685; 0.80714; 0.7903; 0.7795; 0.77244; 0.76812	81.68513; 74.92242; 58.32909;
15		51.45025; 34.99151; 27.74666; 11.66294
17	0.85397; 0.82683; 0.81115; 0.80078; 0.79364;	87.0486; 72.27458; 66.33853; 51.6154;
17	0.7888; 0.78577; 0.78431	45.55699; 30.96595; 24.56959; 10.32147
	0.86786; 0.8439; 0.8283; 0.81844; 0.81442; 0.80643;	83.3456; 78.10145; 64.81504; 59.52108;
19	0.80294; 0.80073; 0.79966	46.29108; 40.87608; 27.7727; 22.04581;
		9.25726