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Abstract: The paper summarizes the first several known discrete probability distributions 

which may describe the occurrence of a random number of events in various experiments, e.g in a 
reliability system, the occurrence of a random number of failures. Among these discrete 

distributions, the first mentioned are usual distributions such as: Poisson(X),\ > 0;Geometric(q),0 

< q< l; Pascal(k,p),k £ N+, 0 < p < 1; Binomial(n,k,p),n,k £ N+,0 < p < 1. Then, some new 

discrete distributions are defined in terms of positive convergent series {an}, 1 < n < oo,an > 0. 
The paper presents methods of simulating the above mentioned distributions, which are either 

general, like the inverse method, or based on the rejection enveloping method. As enveloping 

distributions, either of the said distributions – i.e., Poisson and Geometric – or other less known 
distributions – such as the Zipf distribution or the Yule Distribution – are used. Comments related 

to testing these algorithms are finally presented. 
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1. INTRODUCTION 

 

Any discrete distribution, in the form pn = P(N = n),n = 1,2,... can describe the 

occurence of a random number of events. In reliability, some usual distributions of this 

type are used, basically, the following distributions [2,3,5,9], truncated on [l,oo), (i.e. n > 

1). 

a. Geometric distribution Geo(p), O < p < 1, definesd as 

pn = P(N = n) = q
n
,n G N

+
,                 (1.1) 

b. Pascal distribution Pas(p,k), 0 < p < 1, k ∈ N+, defined as 

 
(1.2) 

c. Poisson(λ), λ > 0 distribution defined as 

 
(1.3) 

d. Binomial distribution Binomial(n,p), n ∈ N+
, 0 < p < 1 defined as 

 
(1.4) 

Methods for simulating these distributions are presented in various papers (see 

[1,5,9]). 

Note that any convergent series of positive terms an, n ≥ 1, could define a discrete 

distribution.  
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If 

 

(1.5) 

then the probabilities of the discrete distributions derived from such series are 

 
(1.5’) 

Some other known discrete distributions, applied in different circumstances are the 

following. 

e. The distribution of Euler [5] defined as 

 
(1.6) 

  
where 

 

(1.6’) 

where γ is the Euler’s constant (0 < γ < 1) [8]. 

f.  The distribution of Kemp defined as [4] 

 
(1.7) 

  
This distribution is also called logarithmic series distribution of the parameter p, 0 < p 

< 1 and pn is in equivalent form 

 
(1.7’) 

  
g. The Zipf distribution [1,5,6] of the parameter a, a > 1 defined as 

 
(1.8) 

  
where 

 

(1.8’) 

is the  Riemann’s function. This distribution describes the occupied memory cells in 

the computer when the memory is dynamically allocated. 

h. The Yule(a) distribution of the parameter a, a > 1, defined as [1,5,6] 

 

(1.9) 

where B(n,a) is Beta function defined as  

 

(1.9’) 

which is connected with function Γ(p) by the formula 

 
(1.9’’) 
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The function Γ(p) is defined as 

 
(1.9’’’) 

Note that for p ∈ N+, the function Γ(p) is 

 (1.9iv) 
The simulation of these distributions is presented in several books and papers (see 

[1,4,5,7]) and they will be briefly described as such in a following section of this paper.  

In [8] several positive convergent series  are found which could define 

such discrete distributions, as 

 

 

The following is a list of positive convergent series collected from [8]: 

 

(1.10) 

 

(1.11) 

 

(1.12) 

 

(1.13) 

 

(1.14) 

 

(1.15) 

 

(1.16) 

 

(1.17) 

 

(1.18) 

 
(1.19) 

One aim of this paper is to present methods for simulating the distributions defined by 

(1.10)…(1.19). 
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2. THE INVERSE METHOD 

 

Any probability distribution can be simulated by a general method, the inverse method 

[1,5,6,7,9]. If  is the cumulative distribution function (cdf) of a random 

variable X, then a sampling value of X is simulated by the formula , where U 

is a random number, uniformly distributed over (0,1). (See [1,6,7,9,10]). This induces the 

following algorithm: 

 Algorithm INV 

 begin 

 generate U an uniform random number over (0,1); 

 take , (where F
-1

 is the inverse of function F(x)=P(X < x)); 

 end. 

The method can be used if there is an easy way to calculate the inverse function F
-

1
(U). In the discrete case, where the function F is a “step” function, the jumps of the 

function are in the points 1,2,…. Thus, the distinct values of F(x) are F(i) defined as 

 

(2.1) 

To simulate a random sampling value i, we must calculate F
-1

(U) using F in the 

formula (2.1) as a step function. In other words, we must search the index i, such as 

. There are various possibilities to search i. One could be binary 

search. Here we use a simpler (but not faster!) procedure, based on dividing the interval 

(0,1) in five intervals, namely  

.  

The algorithm uses a table of distinct values of , such as  

(i.e.  is large enough). The values  are calculated as follows: 

 

(2.1’) 

(The means by which k can be determined is explained later; it is the I0 index below). 

Let us select the indexes I1, I2, I3, I0 as follows: 

 
(2.2) 

The detailed algorithm INV is the following 

 Preparatory step; Calculate F(1),…F(I0), determine I1, I2, I3, I0. 

1. generate U Uniform on (0,1). 

2. if U ≤ 0.25 then begin 

i = I1; while U ≤ F(i) do i := i – 1 end else if U ≤ 0.5 then 

begin i = I2; while U ≤ F(i) do i := i – 1 end 

else if U ≤ 0.75 then begin i = I3; while U ≤ F(i) do i := i – 1 end  

else if U ≤ F(I0) then begin i := I0; while U ≤ F(i) do i := i – 1 end 

else begin i := I0; while U > F(i) do begin i := i + 1; F(i) := F(i) + pi 

end; end; 

deliver i. 
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(i.e. “i” is the generated sampling value). As  are calculated only once 

and if I0 is small, then the algorithm is fast for generating a sampling value i. But 

sometimes I0 may not be small at all, and then the algorithm will be slow. 

The detailed algorithm, described in steps 1. and 2. can be adapted and applied to each 

of the distributions (1.10-1.19). 

 

3. THE ACCEPTANCE-REJECTION METHOD 

 

There are various versions of this method (see [1,4,5,6,7,9,10]). Here, we will be 

using the rejection method based on enveloping the frequency function  of the 

distribution with another frequency function  , which can be simulated. Let us 

assume that there is a constant α > 1 such as  

The formal Theorem is the following: if X is a random variable with frequency 

function pn (to be simulated) and if Y is another random variable (which can be 

simulated) whose frequency function is hn, and if there is a constant  such 

as   

   
and if U is an uniform (0,1) random number independent of Y, then if  

     
the simulated value of X is X = Y. 

The general simulation algorithm is: 

 Algorithm REJ 

 repeat 

 simulate a random variate U uniform (0,1); 

 simulate j a random variate with the frequency function h(n); 

 until  

 deliver i = j; 

The value i is the simulated sampling value of f(n).  

The acceptance probability of the algorithm is  and if it is large, then the 

algorithm is fast. The function h is the enveloping function. To build up the algorithm 

REJ, it is important to find a good enveloping function h such a way as the acceptance 

probability which is large. 

Discussions on simulating by rejection procedure REJ any of distributions (1.10)-

(1.19) will be based on the following idea: the distribution h(n) could be a distribution 

which is decreasing with n, such as can happen in cases of convergent series with positive 

terms. 

This suggests that sometimes (but not always), a candidate for h(n) could be the 

geometric distribution Geom(p), , for which 

 (3.1) 

truncated to n ≥ 1.Therefore, in this case, the distribution h(n) has probabilities 

 
(3.2) 

An enveloping candidate could be also Poisson or any other selected distribution. 
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First we have to specify how to simulate the truncated distribution Geom(p), n ≥ 1. 

In [1,5,9] two procedures to simulate this distribution are presented. Note that this 

distribution is related to Bernoulli triles.  

A Bernoulli trile is an experiment on an event with constant probability p which, 

when it occurs, we say that is a success and when it does not occur, we say that is a 

failure. The number of failures N until a success occurs is a random variable having 

distribution Geom(p). Therefore, this can be simulated as: 

 Algorithm COUNT FAILURES 

1. Read p,  

2. Repeat 

Generate U uniform (0, 1); if U ≥ p then  

 until U < p. 

 The value j is the simulated value of Geom(p). 

We can also use the inverse method to simulate Geom(p). The cdf in this case is 

 

(3.3) 

The inverse method gives 

 
(3.3’) 

where [t] means the integer closest to real number t. 

Since the values of j must be positive, we have to reject the value of j = 0, i.e. the 

algorithm is: 

 repeat 

 generate j from Geom(p) 

 until j > 0. 

The value j is the simulated value of the truncated Geom(p). 

In order to build up the algorithm REJ for all discrete distributions in the form (1.10)-

(1.19), it is enough, in each case, to specify the possible envelope distribution and then to 

determine the constant α in the algorithm REJ. For instance, to determine q of the 

enveloping Geom(p), we find first the maximum value of an  and if this is β = am , then 

select q in the form q = β, β  will be a normalizing number. 

3.1 Simulation of the distribution defined by (1.10). 

Method 1. Here is where we try to determine the geometric distribution as envelope. 

The maximum of an is determined as the maximum of the function 

.  

i.e. the maximum of 

 
After some calculations, it results that the maximum point of this function is 

 
and hence 
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     and this gives 

 
(3.4) 

To determine α, consider the ratio  

 
which, in a similar manner has the same maximum point x0  , and after some calculation 

we finally obtain 

 
(3.4’) 

Now, the construction of the algorithm REJ is terminated. 

Method 2. An alternative method of simulating this distribution is to use the inverse 

method of the equivalent distribution directly: 

 
The cdf is therefore 

 
where the derivative ()’  is calculated with respect to n. To apply the inverse method, we 

have to solve in n (numerically!) the equation 

 
(3.4’’) 

where U is an uniform random number over (0,1). If n0  is the solution of (3.4’’) then the 

simulated value is n = int(n0). 

Method  3. Let us use as enveloping distribution the Kemp distribution i.e. 

 
Then the ratio   becomes 

 
If  b>4, it is shown by induction that 

 
Therefore, when p is selected such as ap > 4 then α > 1 and the algorithm REJ is 

obvious. With respect to , it seems that method 3 is preferable. 

3.2 Simulation of the distribution defined by (1.11) 
Method 1. Note that the sequence is 

 
Let us choose this time as enveloping distribution a Zipf(2) distribution [1,5] defined as 

 

(3.5) 

Consider the ratio 
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After some simple calculations we have 

 

(3.5’) 

and the construction of the algorithm REJ is finished. Simulation of the Zipf distribution 

is found in [1,5] and is presented in the last section. There is a version of this distribution 

[1] which is defined for n = 1,2,…  < ∞ (i.e. a finite series!), referring to a finite 

population of size . Comments on this, will me made in the last section of the paper. 

Method 2. Let us take as enveloping distribution that given by (1.10). Therefore we 

have 

 
then the ratio is 

 
Note that ratio 

 
proved by induction. Therefore 

 
Which if  gives α > 1, and the algorithm REJ is obvious. To decide which 

of these method is preferable, it is necessary to numerically compare the  of the two 

methods. 

3.3 Simulation of the distribution defined by (1.12) 

Method 1. For the sequence  , we have 

 
we select the enveloping distribution h(n) as a Poisson(1) i.e. 

 

(3.6) 

The ratio 

 
(3.6’) 

Since elements f(n), h(n), α are specified, the algorithm REJ is obvious. 

Method 2. If we select as enveloping distribution that given by (1.11), then we have 

 
and 
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therefore, the algorithm REJ is defined. 

Method 3. Since , we can take as envelope the Geo(p), p =  and 

 
and again, the required algorithm is ready. Note that method 1 is the best of the three 

methods, since in that case α is close to one. 

3.4 Simulation of the distribution defined by (1.13) 

Method 1. The sequence 

 
If we select as enveloping distribution the Poisson(1) distribution in the form 

 
(3.7) 

we obtain 

 
(3.7’) 

The algorithm REJ is obvious in this case. 

Method 2. Let us take as envelope the distribution (1.12). In this case, we have 

 
(3.3’’) 

and algorithm REJ is obvious. This method is better than method 1, since  is larger. 

3.5 Simulation of the distribution derived from (1.4) 

Method 1. In this case 

 
We select as an enveloping distribution the Poisson(1), i.e. 

 
(3.8) 

The ratio  is 

 
(3.8’) 

and elements of the algorithm REJ are determined. 

Method 2. Let us choose as enveloping distribution the Kemp distribution. Then the 

ratio becomes 

 
(3.8’’) 

If we choose p such as , then α > 1 and algorithm REJ is defined. With 

respect to , method 1 is preferable.  

3.6 Simulation of the distribution derived from (1.15) 

In this case, note that 

 
We choose as enveloping distribution the Yule(k) distribution in the form 



On the Simulation of Some Particular Discrete Distributions 
 

26 

 

(3.9) 

 

The ratio  is 

 
Therefore 

 
 (3.9’) 

All elements of the algorithm REJ are defined. The probability  can be calculated 

numerically. 

3.7 Simulation of the distribution derived from (1.16) 

Method 1 (known). This is the Zipf(a) Distribution, defined in its general form as 

 

(3.10) 

where the ζ(a) is the ζ  Riemann function. The formula (3.10) shows that ζ(2) ≤ 2, (See 

[1,8]). An algorithm for simulation of the random variable X as Zipf(a) is presented in 

[1,4]. It uses as enveloping distribution the distribution of a random variable Y such as 

 
For which the cdf is 

 
And the inverse method gives 

 
(3.10’) 

(where int denotes “integer part”). Note that ratio 

 
(3.10’’) 

Therefore, the algorithm is 

 Step1: Take b = 2
a-1

; 

Step2: repeat 

 Generate U,V uniforms on (0,1), independent; 

 Take Y = int , T= ; 

  Until VY  

 Deliver X = Y. 

      X is the simulated value. The probability can be easy approximated. 

      Method 2. Let us take as enveloping distribution, the distribution derived from (1.10) 

with the same a. Then we have 

                                                             (3.10’’’) 

and the algorithm REJ is terminated. To decide which of these methods is preferable, it is 

necessary to compare the  probabilities. The second method appears to be the best. 

 

 



Review of the Air Force Academy                                                                  No.2 (37)/2018 

27 

3.8 Simulation of the distribution derived from (1.17) 

Method 1. The distribution is 

 
We take as enveloping distribution the Zipf(2) distribution defined as 

                                                                                         (3.11) 

where Ϛ(2) is the Riemann function of the argument 2. Therefore 

 
It is shown by induction that 

 
Therefore 

                                                                                                    (3.11’) 

The algorithm REJ is specified 

Method 2. Let us take as enveloping distribution the Kemp distribution. Then, the 

ratio becomes 

                                                                     (3.11’’) 

As parameter  is free, we can choose it as follows: 

                                                                  (3.11’’’) 

Thus, algorithm REJ is terminated. To select the best method, the probabilities 

must be estimated numerically. 

3.9 Simulation of the distribution derived from (1.18) 

Method 1. The distribution is 

 
In this case we take again as enveloping distribution the Zipf(2) distribution, i.e. 

                                                                                                                   (3.12) 

The ratio in this case is . 

Here, again by induction, it is shown that  

 

and finally                                                                                    (3.12’) 

The algorithm REJ is obvious. 

Method 2. Let us choose as enveloping distribution the Kemp distribution  

i.e.                                                                                                (3.12’’) 

The ratio  is 

                                                (3.12’’’) 

If we choose  as  

 which can be done, then , algorithm REJ is ready. 
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3.10 Simulation of the distribution derived from (1.19) 

Method 1. In this case we have  

                                                                            (3.13) 

Let us take as enveloping distribution (1.10) 

                                                                                                             (3.13’)  

Now the ratio  is . 

Since the function  for  we have 

. 

If we now choose as 

 ,                                                                                           (3.13’’) 

then the ratio becomes , and the algorithm REJ is ready. 

Method 2. Let us take as enveloping distribution the distribution of Kemp of the 

paramtere β,  then we have 

. 

Note that , and then 

. 

Finally, one obtain  .                         (3.13’’’) 

i.e. the algorithm REJ is specified. Here again the probabilities will show which 

method is preferable. 

 

4. ADDENDA: SIMULATION OF USED DISTRIBUTIONS 

 

The simulation of discrete distributions mentioned in the formulas (1.6)-(1.9) will be 

presented in the following. 

4.1 Simulation of logarithmic series of the parameter p 

This distribution is .                                 (4.1) 

Method 1. One method for simulating this distribution consists in the fact that the 

random variable X having this distribution is a mixture (see [5]) of the random variable Y 

with the cdf 

.                                                                                          (4.2) 

with the Geometric(y) distribution. Therefore, the algorithm is Generate a random 

variate y by the inverse method, i.e solve the equation 

;                                                                                                                 (4.2’) 

Generate X as Geometric(y). 

Deliver X. 

In [5], the inverse method for simulating X is presented, (i.e. the solution of (4.2’)). 

 

Method 2. Let us take as enveloping distribution the one deriving from (1.10).  
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Then,

 

In this case , 

which gives  and the algorithm REJ is defined. It seems difficult 

to compare these methods, if not by means of computer tests. 

4.2 Simulation of  distribution 

 Method 1. In this case 

,                                                                              (4.3) 

where Ϛ( ) is the Riemann function. In [1,5] a rejection method which uses the 

enveloping distribution is presented: 

.                                                   (4.4) 

By calculating the ratio , it results that . (4.5) 

In [1] it is shown that 

.                                                          (4.5’) 

There are some remarks to be made regarding this distribution. 

(1). If , it is used to represent random events, such as number of 

occupied cells of a computer memory of size  , when memory is dynamically 

allocated;. 

(2). For a finite  this distribution describe the random occurrence of words in a text 

of a given length (natural language). 

Method 2, (New method). Let us select as enveloping function the  as the  

distribution. Then 

, 

and hence 

.                                                               (4.5’’) 

We can choose the parameter  such as  and the algorithm REJ is obvious. A 

more relevant comparison between these methods could be done by means of computer 

tests. 

4.3 Simulation of Euler distribution 

Method 1.(Known). This distribution is 

,                                          (4.6) 

where γ is the constant of Euler. In this case, we are using a rejection method based on 

enveloping , with the distribution of Logarithmic series of parameter p, 0¡p¡1. The 

ratio is 

 

         .                                                         (4.6’) 

 



On the Simulation of Some Particular Discrete Distributions 
 

30 

If we choose  such as  

 
then . The elements of the algorithm REJ are defined. 

Method 2.(New) Let us take as enveloping distribution the Geometric(q), where 

. 

Since  , we have 

 
and REJ is defined. Here again, the comparison of methods could be done via computer 

tests. 

4.4 Simulation of  distribution 

The simulation is based on the following judgment: The Yule(a) distribution is the 

mixture of the Geometric(p) distribution with 

 
and Exp(1) distribution of Y. This results in the following algorithm: 

1. Generate E and Exp(1) random variate. (i.e. Generate U uniform (0,1) and take 

E=-log(u)), U>0. 

2. Generate , independent from E; 

3. Calculate 

. 

The  X variable is the required Yule(a) variable. 

In [1], it is specified that the Yule distribution is a better approximation of word 

frequencies (in a natural language) than the Zipf distribution.  

Comments. Computer tests were not performed yet. They could be performed 

following the hints in [10]. This could make a good exercise for an M.Sc. student. Such 

an exercise could be could be useful for comparing various methods of simulation for 

each distribution. The inverse algorithms must be first considered to assess the 

performance degree of these methods. 
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