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Abstract: In this paper we give some sufficient conditions for the oscillation of all solutions of the 
following system of neutral difference equations with variable coefficients 
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1. INTRODUCTION AND 
PRELIMINARIES 

 
In this paper, we shall look at the 

oscillatory properties of all the solutions of the 
system of neutral difference equations with 
variable coefficients 

++Δ ))n-aλ(cu)n(u( ii 0)n-k(u)n(α
r

1j
jij =∑
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r1,2,...,i =                                                (1) 
  

where  are real sequences with 
 and 

)n(ijα
r,...,2,1j,i = 1a ±=  ,  are positive 

integers, and ∆ is the first order 
forward difference operator, i.e,  

k,λ
),1[ ∞−∈c

 

)n(u)1n(u)n(u −+=Δ . 
Definition 1. We say that a solution 

t
r21 )]n(u),...,n(u),n(u[)n(u =  of equation (1) 

is oscillating if for some  and for 
every integer , there exists  such  
that . 

}r,...,2,1{i∈
0n0 > 0nn >

0)1n(u)n(u ii <+
Definition 2. We say that a solution 

signum. 
Although the problem oscillation solutions 

for the difference equations has attracted many 
researchers, in recent years there has been 
much research activity concerning the 
oscillation of solutions of delay difference 
equations. For these oscillatory results, we 
refer to the [1,2,3,4,5,6] and the references 
therein.  

In [2] Agarwal and Grace established 
oscillation criteria for the higher order systems 
of difference equations with constant 
coefficients. Further, in [3] Chuanxi, Kuruklis 
and Ladas studied oscillatory behaviour of 
systems of difference equations with variable 
coefficients. 

In this paper, we obtain sufficient 
conditions for the oscillations of all the 
solutions of (1). To establish the main results 
we need a result on the oscillation of solutions 
of an Eq. with regressive differences [5].
 

Lemma 1.  Let k be a positive integer and 
let }{ nα  be a sequence of non-negative real 
numbers such that 

0
k

0j
jn >α∑

=
+              (2) 

t
r1 )]n(u),...,n(u[)n(u = is nonoscillatory if it is 

not eventually the trivial solution and if each 
component      has   eventually   constant )n(ui for all large . n
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Assume that  is a solution of the 
following difference inequalities 

}v{ n
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such that 
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Then the difference equation 
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has a solution  such that    for 
 and 
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Lemma 2. Suppose that  is a positive 
sequence of real numbers and let k be a 

}{ nα

positive integer. For every solution of equation  
(4) to be oscillatory is sufficient to have the 
relationship 
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Proof. Assume, for the sake of 
contradiction, that equation (4) has a 
nonoscillatory solution . As the opposite 
of a solution of Eq. (4) is also a solution, we 
may (and do) assume that is eventually 
positive. Then eventually 

}u{ n

}u{ n
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and so  is an eventually decreasing 
sequence of positive numbers. It follows from 
equation (4) that eventually 
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Set 
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then, from (6), it is clear that we can choose a 
constant β  such that, for n sufficiently large, 
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for all large n.     
By using (10) and the well-known 

inequality between the arithmetic and 
geometric means we find that for n sufficiently 
large, 
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that is, 
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for all large n.      
In particular, this implies that 10 <β< . 

Now observe that 
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where α  is the positive constant defined by 
(8).  

Therefore 
 

k1k11 −λα≤λ−  for  10 ≤λ<
 

and (11) yields 
 

knn uu −≤
α
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for all large n.     
By using (12) in Eq. (4) and then by 

repeating the above arguments we find that  
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and, by induction, for every  there  
exists an integer 
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mN  such that for mNn ≥  
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Next observe that because of (9), for n 
sufficiently large, 
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Hence, for n sufficiently large, 
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Where . Choose m such that β= kB
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This is possible because from (9), α>β . 
Then for n sufficiently large, say for , 
(13) is satisfied for the specific m which was 
chosen in (15), also  (9) and (14) hold, and 

 is decreasing for . Now in view 
of (14) and for , there exists an 
integer 
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From equation (4) and the decreasing 
nature of , we have }u{ n
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From (16) and (17) we find 
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which in view of (13) yields 
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This contradicts (14) and so the proof of 
the theorem is complete.      

 
2. MAIN RESULTS 

 
In this section, we shall establish a few 

sufficient conditions for the oscillations of all 
the solutions of equations (1).  
     i. First, we analyze the behavior of the 
solutions oscillating system with variable 
coefficients (1) for a while . 0c =
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where  are real sequences with )}n(α{ ji

r,...,2,1j,i =  and +∈Zk . In this sense we can 
state the following Theorem.

Theorem 1. Suppose that 0c = . Let 
 be real sequences with )}n(α{ ji r,...,2,1j,i =  

and let K be a positive integer. If every 
solution of the equation 
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then every solution of  (18) oscillates. 
Proof. Assume that equation (18) has a  

nonoscillatory and eventually positive solution 
t

r21 )]n(u),...,n(u),n(u[)n(u = . Then, there 
exists an integer  such that  
for , 
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Therefore, from the above inequality we 
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By the eventual positivity of , , 
…,

)n(u1 )n(u2
)n(ur we conclude that w(n) is eventually 

positive. Then by Lemma 1, we see that 
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has a positive solution  for , 
which contradicts our hypothesis and 
completes the proof. Thus, we have the 
following corollary that is immediate. 
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Corollary 1. Let  be as in (20)  and  k 
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holds, then all the solutions of the equation (1)  
oscillate. 

Proof. It follows immediately if one takes 
into account the Lemma 2 and Theorem 1.    

Suppose now that ),0()0,1[c ∞∪−∈ , we 
can state the following Theorem. 

Theorem 2. Let  be real sequences 
with ; 

)}n(α{ ji

rji ,...,2,1, = k,λ )( λ>k  are positive 
integers  and )(nα  is defined in (20). 
 

a. If ,  and every 
solution of the equation 
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is oscillatory, then every solution of equation 
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b. If , a  and every solution of the 
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is oscillatory, then every solution of equation 
(1) is oscillating. 

c. If  c 1= , 1a −=  and every solution of  
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So, as in Theorem 1, we have for  01 nnn ≥≥
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It is clear that  and  are 
positive sequences. We see from (26) that if  
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Next, from the above we have the 

following:     
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Using the same reasoning as in Theorem 1 
we arrive at a contradiction in each of the  
above situations and the theorem is completely 
proven.  

The following corollaries are immediate, if 
one takes into account Lemma 2 and Theorem 
2.
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then every solution of  (1) is oscillating. 
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then every solution of  (1) is oscillating. 
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then every solution of  (1) is oscillating. 
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then every solution of  (1) is oscillating.   
 

4. CONCLUSIONS 
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The results of this work may constitute the 
starting point for other generalizations. In 
reference [6], under some appropriate 
conditions over the real sequences , and }α{ n

}{ nβ , the behavior of all the solutions of the 
oscillating difference equation with variable 

0)n(inflim ii
n
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. 
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