Doppler Effect
In radar technology the Doppler Effect is using for the following tasks:
•Speed measuring;
•MTI - Moving Target Indication;
•In air-or space-based radar systems for precise determination of lateral distances.
The Doppler- Effect is the apparent change in frequency or pitch when a sound source moves either toward or away from the listener, or when the listener moves either toward or away from the sound source. This principle, discovered by the Austrian physicist Christian Doppler, applies to all wave motion.
The apparent change in frequency between the source of a wave and the receiver of the wave is because of relative motion between the source and the receiver. To understand the Doppler effect, first assume that the frequency of a sound from a source is held constant. The wavelength of the sound will also remain constant. If both the source and the receiver of the sound remain stationary, the receiver will hear the same frequency sound produced by the source. This is because the receiver is receiving the same number of waves per second that the source is producing.
Now, if either the source or the receiver or both move toward the other, the receiver will perceive a higher frequency sound. This is because the receiver will receive a greater number of sound waves per second and interpret the greater number of waves as a higher frequency sound. Conversely, if the source and the receiver are moving apart, the receiver will receive a smaller number of sound waves per second and will perceive a lower frequency sound. In both cases, the frequency of the sound produced by the source will have remained constant.
For example, the frequency of the whistle on a fast-moving car sounds increasingly higher in pitch as the car is approaching than when the car is departing. Although the whistle is generating sound waves of a constant frequency, and though they travel through the air at the same velocity in all directions, the distance between the approaching car and the listener is decreasing. As a result, each wave has less distance to travel to reach the observer than the wave preceding it. Thus, the waves arrive with decreasing intervals of time between them.